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Deyaaeldeen Almahallawi
TOWARDS EFFICIENT GRADUAL TYPING VIA MONOTONIC

REFERENCES AND COERCIONS

Integrating static and dynamic typing into a single programming language enables programmers to

choose which discipline to use in each code region. Different approaches for this integration have

been studied and put into use at large scale, e.g. TypeScript for JavaScript and adding the dynamic

type to C#. Gradual typing is one approach to this integration that preserves type soundness by

performing type-checking at run-time using casts. For higher order values such as functions and

mutable references, a cast typically wraps the value in a proxy that performs type-checking when

the value is used. This approach suffers from two problems: (1) chains of proxies can grow and

consume unbounded space, and (2) statically typed code regions need to check whether values are

proxied. Monotonic references solve both problems for mutable references by directly casting the

heap cell instead of wrapping the reference in a proxy.

In this dissertation, an integration is proposed of monotonic references with the coercion-based

solution to the problem of chains of proxies for other values such as functions. Furthermore, the

prior semantics for monotonic references involved storing and evaluating cast expressions (not yet

values) in the heap and it is not obvious how to implement this behavior efficiently in a compiler and

run-time system. This dissertation proposes novel dynamic semantics where only values are written

to the heap, making the semantics straightforward to implement. The approach is implemented

in Grift, a compiler for a gradually typed programming language, and a few key optimizations

are proposed. Finally, the proposed performance evaluation methodology shows that the proposed

approach eliminates all overheads associated with gradually typed references in statically typed

code regions without introducing significant average-case overhead.
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CHAPTER 1

Overview

Programming languages can be classified as statically or dynamically typed. On one hand,

statically typed languages perform checks on the source code looking for inconsistencies according

to a defined set of typing rules. On the other hand, dynamically typed languages typically interpret

the source code right away, and perform checks on inputs to primitives as they are called. Each

approach has its own strengths and they are discussed in the next two sections.

1. Static Typing

A static type system allows programmers to specify properties of functions that are proved before

each execution. The specification language also serves as a design language that programmers can

use to design a big part of the architecture of their program without even writing any code that

implements this specification yet. Furthermore, this specification language is closely tied to the

code allowing for smooth refactoring and code changes.

Static type systems are deemed valuable as they are a first line of defense against programming

errors. In particular, they can catch type errors early in the development cycle by using the typing

information to prove the absence of a particular class of bad program behaviors (e.g. loading a

string from the heap and try to add it to an integer).

Furthermore, a compiler can take advantage of the typing information present in the source

code and produce efficient target code. For instance, if an operation on integers is guaranteed to

only receive integer inputs, there is no need to insert checks on the input that verify this condition

at runtime. Moreover, the runtime representation of values could be leaner as they do not have to

store what their types are. This space saving can lead to more runtime efficiency.

Moreover, the typing information can serve as a reliable, never out-of-date, documentation of

the code. If a code change leads to a typing change, type information has to be updated so that

the program could be type-checked in order for it to be executed.
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Finally, IDEs use typing information to provide a better experience to programmers as they are

interactively writing their programs. For instance, IDEs can perform type-checking continuously

to highlight code regions that contain type errors and show the error messages if requested. Also,

type information helps in auto-completing by providing live suggestions for what to write next.

2. Dynamic Typing

Because of these reasons, some consider static typing as the world’s most successful formal method.

However, there are scenarios where the static type system can get in the way. As Leroy and Mauny

put it “there are programming situations that seem to require dynamic typing in an essential

way” [Leroy and Mauny, 1991]. A dynamically typed language accepts all programs at compile-

time and type-checking is deferred to runtime. Type-checking occurs in every primitive operation

and if one of the arguments fails the runtime type-check, the program execution raises an exception.

All values in dynamically typed languages are tagged, i.e. runtime values store its type, which are

checked against the expected type in primitive operations.

Dynamic typing has advantages over static typing. Dynamic typing is more expressive than

static typing because a static type system can not decide whether or not an arbitrary program

will get stuck or reach a state of undefined behavior. Therefore, the type system rejects programs

conservatively, even ones that do not have any errors.

Furthermore, some abstractions can not be type-checked. For instance, the eval function takes

a string as input, interprets it as an expression of the language down to a value, and returns that

value. The type of the returned value cannot be known at compile-time, without knowing the type

of the expression, so it is type-checked at runtime instead. For this type-checking to work, values

returned by eval must carry some type information at runtime.

Finally, language design is simplied with dynamic typing which enables rapid development,

especially for prototyping and testing.

3. Combining Static Typing and Dynamic Typing

Consider the following scenario: a programmer had an idea for a new tool or service and created a

prototype in an easy-to-write dynamically typed language, e.g. Python or JavaScript. If the proto-

type gains traction, it would be put into production use, possibly at large scale. The complexity of
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the architecture of the prototype could grow over time as new features are added. This could lead

to growth in bugs and performance issues. Without having static typing available in the program-

ming language, developers are forced to port the code base to a statically typed language to unlock

better performance based on type information and fix bugs that stem from type inconsistencies.

However, the cost of such cross-language migration is prohibitive.

Given that each approach has its unique features and advantages, it can be desirable to have

both approaches available to programmers instead of limiting them to one per program. With a

language that combines both approaches, the prototype could have been first written with no static

types, and developers would add type annotations to it over time as needed without the need to

migrate to another different language.

The integration of static and dynamic typing and allowing interoperability between typed and

untyped code has attracted a lot of interest, in both academia and industry. Many companies built

different languages that mix static and dynamic typing in different ways. In particular, Google built

Dart [Team, 2014], Facebook engineered HHVM for Hack [Zhao et al., 2012, Ottoni, 2018], and

Microsoft added the type Dynamic to C# [Bierman et al., 2010] and introduced TypeScript [Bierman

et al., 2014]. On the academic side, earlier approaches of interoperation were proposed [Thatte,

1990, Findler and Felleisen, 2002b, Anderson and Drossopoulou, 2003, Gray and Flatt, 2004, Bracha,

2004, Flanagan, 2006, Lagorio and Zucca, 2006] before gradual typing was proposed [Anderson and

Drossopoulou, 2003, Siek and Taha, 2006, Tobin-Hochstadt and Felleisen, 2006, Gronski et al.,

2006, Matthews and Findler, 2007]. In the past decade, considerable progress has been made

on the theory of gradual typing, such as understanding interactions with objects [Siek and Taha,

2007], generics [Ina and Igarashi, 2011, Ahmed et al., 2011, 2017, Igarashi et al., 2017], mutable

state [Herman et al., 2007, Siek et al., 2015c], recursive and set-theoretic types [Siek and Tobin-

Hochstadt, 2016, Castagna and Lanvin, 2017], control operators [Sekiyama et al., 2015], and type

inference [Siek and Vachharajani, 2008, Garcia and Cimini, 2015, Campora et al., 2017, Migeed

and Palsberg, 2019].

The term gradual typing is often used to describe language designs that integrate static and

dynamic typing. However, some of these designs do not satisfy the original intent of gradual typing

because they do not support the convenient evolution of code between the two typing disciplines.

This property was formally defined [Siek et al., 2015a] and named the gradual guarantee. Without

this property, it would be harder to incrementally migrate untyped code to be typed because some
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of the configurations, obtained by adding/removing type annotations in the source program, might

exhibit unexpected runtime errors.

Furthermore, there are two properties that make gradual typing appealing: soundness and in-

teroperability. Regarding soundness, programmers, compilers, and IDEs would like to trust that

the program execution respects the type annotations in the source code. Regarding interoperabil-

ity, programmers would like to write code where typed code regions and untyped code regions

interoperate seamlessly. To preserve soundness and interoperability, gradual typing inserts casts at

the boundaries between typed and untyped code regions which can affect performance negatively.

4. Problem Statement

Beginning with the observations of Herman et al. [2007, 2010], that the standard operational seman-

tics for the Gradually Typed Lambda Calculus can exhibit unbounded space leaks, and continuing

with the experiments of Takikawa et al. [2016], which showed that Typed Racket [Tobin-Hochstadt

and Felleisen, 2008] exhibits high overheads on real programs, and the observation of Siek and

Vitousek [2013] that overheads occur even in statically typed programs, it has become clear that

efficiency is a serious concern for gradually typed languages.

Herman et al. [2007] attribute the efficiency problem to the space leak which is due to proxies.

Casting a function value wraps it in a proxy [Findler and Felleisen, 2002b] that checks, at application

sites, whether the types of the input and output values matches that of the cast. Similarly, casting

a reference value wraps the reference in a proxy that checks at read sites if the value on the heap

could be cast to the type the context expects, and checks at write sites if the written value could

be cast to the type of the heap cell.

Using proxies to cast higher-order values causes two problems. First, each time a value of

a higher-order type crosses the boundary between a statically and dynamically code regions, it

gets wrapped in a proxy. Multiple boundary crossings accumulate into a chain of proxies. These

chains of proxies can grow without bounds, causing space leaks. Furthermore, the chains of proxies

can cause runtime slowdowns to the extent of changing the asymptotic complexity of a program.

Kuhlenschmidt et al. [2019] demonstrate this problem with a simple quicksort program that is fully

statically typed except for one annotation, causing a proxy to be created around the vector being

sorted at each recursive call to the sort function. The runtimes collected from running the program

on different input sizes suggest that the asymptotic complexity changes from O(n2) to O(n3).
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The second problem with using proxies is the overhead of runtime dispatch on higher-order

values at use sites, especially in statically typed code. At each use site, the implementation must

check whether the incoming value is proxied, and if so, perform runtime checks before and/or

after processing the underlying value. This runtime dispatch is necessary even in statically typed

code regions, because a reference from a dynamically typed region may flow into a static region.

This problem prevents the performance of statically-typed code in a gradually-typed programming

language to be on par with corresponding code in statically-typed programming languages.

To address this concern, the research community has made some first steps towards answer-

ing the important scientific question: What is the essential overhead of gradual typing? This is

a difficult and complex question to answer. First, there is a large language design space: choices

regarding the semantics of a gradually typed language have significant impacts on efficiency. Sec-

ond, there is the engineering challenge of developing the implementation technology necessary for

performance evaluations. Third, there is the scientific challenge of inventing techniques to improve

efficiency. I discuss these three aspects in the following paragraphs and describe where the work of

this dissertation fits in. While we cannot hope to outright answer this question, this work eliminates

some spurious factors and provides a rigorous baseline for further experimentation.

The Language Design Space Siek et al. [2015b] describe five criteria for gradually typed

languages, including type soundness and the gradual guarantee.. The type soundness criteria re-

quires that the value of an expression must have the type that was predicted by the type system.

The gradual guarantee states that changing type annotations should not change the semantics of

the program, except that incorrect type annotations may induce compile-time or run-time errors.

For expediency, many languages from industry (TypeScript [Hejlsberg, 2012, Bierman et al.,

2014], Hack [Verlaguet and Menghrajani, 2014], and Flow [Flo, 2017]) are implemented by retrofitting

a type system on an existing dynamically typed languages and the compiler erases types and com-

piles to that dynamically typed language. This approach does not provide type soundness in the

above sense.

Several of the designs from academia (Thorn [Bloom et al., 2009], TS? [Swamy et al., 2014], Safe

TypeScript [Rastogi et al., 2015, Richards et al., 2017], Strong Script [Richards et al., 2015], and

Typed Racket 1 [Tobin-Hochstadt and Felleisen, 2008]) place restrictions on which implicit casts

1Typed Racket is sound and partially supports the gradual guarantee: its type system does not satisfy the
static part of the gradual guarantee because it requires what amounts to an explicit downcast to use a
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Gradual Guarantee wrt.
Language Sound Structural Types Nominal Types Granularity Approach Space-Efficient

Gradualtalk    Fine Retrofit #
Guarded Reticulated Python    Fine Retrofit #

Nom  –  Fine From-Scratch  
GTLC+   – Fine From-Scratch  

TypeScript #   Fine Retrofit  
Safe TypeScript  # # Fine Retrofit  
Typed Racket  G# G# Coarse Retrofit  

Transient Reticulated Python G#   Fine Retrofit  

Figure 1. A comparison of gradually typed programming languages.

are allowed, typically for the sake of efficiency, but at the price of losing the gradual guarantee.

The fundamental tension is that providing both the gradual guarantee and type soundness means

that an implementation must perform runtime type checking at the boundaries between statically

typed and dynamically typed regions of code, and that runtime checking can be time consuming.

Another aspect of the language design space that impacts efficiency is whether a gradually typed

language includes structural or nominal types. With nominal types, the runtime check for whether

a value has a given type is efficient and straightforward to implement. Indeed, Nom [Muehlboeck

and Tate, 2017], a nominally typed object-oriented language (without generics or function types),

exhibits low overhead on the sieve and snake benchmarks from the Gradual Typing Performance

Benchmarks [GTP, 2018]. On the other hand, with structural types, the runtime check can be much

more complex, e.g., for higher-order types it may involve the use of a proxy to mediate between a

value and its context.

Finally, gradual typing can be applied at varying granularities. For example, in Typed Racket,

a module may be typed or untyped. I refer to this as coarse-grained gradual typing. In contrast, in

TypeScript [Hejlsberg, 2012, Bierman et al., 2014] and Reticulated Python [Vitousek et al., 2014,

2017], each variable may be typed or untyped, and furthermore, a type annotation can be partial

through the use of the unknown type. I refer to this as fine-grained gradual typing.

Figure 1 summarizes the discussion up to this point. The top-half of the table lists four lan-

guages that meet the criteria for gradual typing whereas the bottom-half includes languages that do

not provide type soundness and/or the gradual guarantee. Compared to the other three languages

that satisfy the criteria, the GTLC+ language (and Grift compiler) described in this paper is novel

in its support for structural types and guaranteed space efficiency.

Racket module from a Typed Racket module. However, the semantics of Typed Racket’s runtime checks are
compatible with the dynamic part of the gradual guarantee.
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This dissertation studies the efficiency of gradually typed languages that include structural

types and employ fine-grained gradual typing.

Implementation Technology A popular approach to implementing gradually typed lan-

guages is to retrofit a pre-existing language implementation. The benefit of this approach is that it

quickly provides support for large number of language features, facilitating performance evaluations

on a large number of real programs. The downside is that the pre-existing implementation was

not designed for gradual typing and may include choices that interfere with obtaining efficiency on

partially typed programs. Many of the gradually typed languages to date have been implemented

via compilation to a dynamically typed language, including TypeScript, Typed Racket, Gradu-

altalk, Reticulated Python, and many more. These implementations incur incidental overhead in

the statically typed regions of a program.

The opposite approach is to develop a from-scratch implementation of a gradually typed lan-

guage. The benefit is that its authors can tailor every aspect of the implementation for efficient

gradual typing, but an enormous engineering effort is needed to implement all the language features

necessary to run real programs.

For a gradually typed language, one of the most important choices is how to implement runtime

type checks. For expediency, Typed Racket uses the Racket contract library [Findler and Felleisen,

2002a]. The contract library is more general than is necessary because it supports arbitrary pred-

icates instead of just type tests. In subsequent years since the performance evaluation of Typed

Racket [Takikawa et al., 2016], several performance problems have been fixed [Bauman et al., 2017,

Feltey et al., 2018]. It is unclear how much performance is left on the table given the extra layers

of abstraction and indirection in the contract library.

To better isolate the essential overheads of gradual typing, this dissertation studies a from-

scratch implementation in the context of a simple ahead-of-time compiler with a close-to-the-metal

implementation of runtime type checks. The alternative of using just-in-time compilation is a

fascinating one [Bauman et al., 2017, Richards et al., 2017], but it is important to also study an

implementation whose performance is more predictable, enabling the isolation of causes of overhead.

Furthermore, the compiler can be configured to turn off gradual typing all together, i.e. the source

language becomes statically typed. This mode enables measuring the overheads in statically typed

benchmarks compiled with gradual typing and also verifying the effectiveness of solutions to the
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dynamic dispatch problem such as using a closure representation that can act as either a regular

closure or as a function proxy but with a uniform calling convention [Siek and Garcia, 2012].

Innovations to Improve Efficiency Perhaps the most challenging obstacle to determining

the essential overhead of gradual typing is that creative researchers continue to make innovations

that can lower the overhead of gradual typing! To make claims about the essential overhead of

gradual typing, these ideas must be implemented and evaluated.

Herman et al. [2007, 2010] observe that the coercions of Henglein [1994] (originally designed

for the compile-time optimization of dynamically typed languages) can be used to guarantee space

efficiency in the proxies needed for higher-order structural types by normalizing coercions. Space

efficiency is guaranteed because arbitrarily long sequence of coercions are compressed into an equiv-

alent coercion of length three or less. Thus, the size of a coercion c in normal form is bounded by

its height h, size(c) ≤ 5(2h−1). The height of the coercions generated at compile time and runtime

are bounded by the height of the types in the source program. Thus, at any moment during pro-

gram execution, the amount of space used by the program is O(n), where n is the amount of space

ignoring coercions. To date the research on coercions for gradual typing has been of a theoretical

nature. The Grift compiler is the first to empirically test the use of coercions to implement runtime

casts for gradually typed languages.

For implementations that rely on contracts for runtime checking, space efficiency is also a

concern and Greenberg [2014] discovered a way to compress sequences of contracts, making them

space efficient. Feltey et al. [2018] implement This technique, collapsible contracts, in the Racket

contract library and demonstrate that it significantly improves the performance of Typed Racket

on some benchmarks. However, contracts cannot be compressed to the same degree as coercions

(predicates are more expressive than types), which means that the time overhead has larger constant

factors, factors that depend on the total number of contracts in a program.

Another innovation is the notion of monotonic references [Siek et al., 2015c], which has the

potential to eliminate the overhead of gradual typing in statically typed regions of code, effectively

solving the dynamic dispatch issue for references. However, Siek et al. [2015c] left as future work the

challenge of identifying a normal form for coercions with monotonic references and of developing

a function for composing such coercions. Furthermore, the monotonic heap maps addresses to

expressions that are reduced using a small-step reduction relation. (Normally only values are

stored in the heap.) It is not obvious how to implement this reduction-in-the-heap in a compiled
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implementation of a gradually-typed language. In this dissertation, I study monotonic references,

design a new dynamic semantics for it that writes values only to the heap and integrate it with the

coercion-based solution to the space-efficiency problem. Furthermore, I use the new semantics to

reduce overhead in the context of the Grift compiler.

Furthermore, I present evidence that efficiency can be achieved in a fine-grained gradually

typed language with structural types. I contributed to the design, implementation, and evaluation

of an ahead-of-time compiler, named Grift, that uses carefully chosen runtime representations to

implement coercions.

The input language includes a selection of language features that are difficult to implement effi-

ciently in a gradually typed language: first-class functions, mutable arrays, and equirecursive types.

The language is an extension of the Gradually Typed Lambda Calculus, abbreviated GTLC+.

5. Thesis Statement

In this dissertation, I study the challenge of achieving efficiency in a gradual typing system for a

challenging combination of points in the language design space, implementation technology, and

innovations. Regarding the language design space, I study the efficiency problem in the context of

a gradual type system that is conjectured to satisfy the gradual guarantee and enjoys soundness.

Furthermore, this gradual type system supports structural types and fine-grained gradual typing.

Regarding implementation technology, the gradual type system is implemented from-scratch as an

ahead-of-time compiler. Finally, regarding research innovations, the studied gradual type system

uses coercions to achieve space-efficiency in partially typed code and a novel dynamic semantics for

monotonic references to achieve efficiency in statically typed code.

The thesis of this dissertation is that using monotonic references and coercions can bring the

cost of fine-grained gradual typing down to a much more reasonable level:
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Monotonic references can be combined with coercions in nor-

mal form in a manner that guarantees space-efficiency and the

new calculus can be implemented in a way that writes values

only to the heap and it eliminates all overheads related to grad-

ually typed references from statically typed code regions and

improves the performance on average in partially typed code

regions.

6. Methodology

In this thesis, I utilize monotonic references and coercion to minimize the cost of runtime type

checking in fine-grained gradual typing with structural types. I design a new dynamic semantics

for monotonic references that writes values only to the heap. The new semantics is mechanized

in the Agda proof assistant. Furthermore, I design a new normal form for coercions that include

one for monotonic references along with a composition operator and I prove that their height is

bounded to guarantee space-efficiency.

Moreover, I contributed to the design and implementation of an ahead-of-time compiler for a

gradually typed language. The support for coercions in the compiler can be turned on and off to

enable measuring the cost of space-efficiency. Furthermore, the support for monotonic references

can also be turned on and off, to enable measuring the cost of monotonic references. Finally, the

compiler can be configured to turn off the support for gradual typing all together, i.e. the source

language becomes statically typed, to enable measuring the overhead of gradual typing in statically

typed benchmarks.

Finally, I contributed to the design and implementation of various experiments to evaluate the

performance of gradual typing and to answer a few key research questions about the efficiency of

gradual typing, namely:

(1) What is the time cost of achieving space efficiency with coercions?

(2) What is the overhead of gradual typing? I subdivide this question into the overheads

on programs that are (a) statically typed, (b) untyped, and (c) partially typed.

(3) Do monotonic references eliminate overheads associated with gradual typing

from statically typed code?
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(4) What is the overhead of using monotonic references in partially typed and

untyped code?

7. Outline

The rest of the dissertation is organized as follows. Chapter 2 provides background on gradual

typing including the type-based and coercions approaches. In Chapter 3, I review monotonic

references by presenting an earlier work [Siek and Vitousek, 2013], the monotonic abstract machine

that is mechanized in Isabelle/HOL. Chapter 4 presents a variant of the reduction semantics for

monotonic references [Siek et al., 2015c] that I mechanized in the Agda proof assistant and solves

a few minor problems in prior work. In Chapter 5, I present two novel dynamic semantics for

monotonic references that are also mechanized in the Agda proof assistant. The first one provides

a cast function that returns a value (that can then be written to the heap) and a list of casts on

addresses that are put into a queue for subsequent processing, making the semantics straightforward

to implement. Furthermore, the second semantics adds space-efficiency to the first by providing

a new normal form for coercions along with a composition operator. Chapter 6 presents the

design of an ahead-of-time compiler, named Grift, for the GTLC+ and in Chapter 7 I describe the

implementation of monotonic references in Grift. Finally, the performance of Grift is evaluated in

Chapter 8 to answer the research questions listed earlier and Chapter 9 concludes.
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CHAPTER 2

Review of Gradual Typing

In this chapter, I review gradual typing by presenting the reduction semantics for the gradually

typed lambda calculus with pairs. From a language design perspective, gradual typing touches

both the type system and the operational semantics. The key to the type system is the consistency

relation on types, which enables implicit casts to and from the dynamic type (a.k.a the unknown

type), while still catching static type errors [Anderson and Drossopoulou, 2003, Siek and Taha,

2006, Gronski et al., 2006].

1. Type System

Recall the typing rule for applications in a traditional statically typed language.

Γ `M : T1 → T2 Γ ` N : T1

Γ `M N : T2

The rule specifies that the type of the argument N has to exactly match the type expected by

the function M . This rigidness is relaxed in a gradual typed language as the type of the argument

no longer needs to exactly match the type of function parameter. Instead, they just needs to be

consistent, i.e. the two types needs to match except for the unknown parts. More formally, the

application typing rule is defined as follows:

Γ `M : T1 → T2 Γ ` N : T ′1 T1 ∼ T ′1
Γ `M N : T2

The consistency relation is defined in Figure 1 where the dynamic type is denoted by ?. The

consistency relation is reflexive and symmetric but unlike subtyping it is not transitive.

Furthermore, values of the dynamic type are also allowed to be applied as functions to arguments

of arbitrary types. This flexibility resembles that of dynamically typed languages as no checks are

carried out by the type system and are deferred instead until runtime. This idea is captured by

the following extra application typing rule:
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Base types B ::= () | Bool | Int
Types T, S ∈ T ::= ? | B | T → T | T × T
Contexts Γ ::= ∅ | Γ, x : T

Consistency T ∼ T

? ∼ T T ∼ ? B ∼ B T1 ∼ T3 T2 ∼ T4

T1 → T2 ∼ T3 → T4

T1 ∼ T3 T2 ∼ T4

T1 × T2 ∼ T3 × T4

Type precision T v T

T v ? B v B T1 v T3 T2 v T4

T1 → T2 v T3 → T4

T1 v T3 T2 v T4

T1 × T2 v T3 × T4

Figure 1. Types for the gradually typed lambda calculus.

The syntax of the source language

Expressions e,M,N ::= k | λx. e | e e | 〈e, e〉 | fst e | snd e
Typing rules for the source language Γ `M : T

Γ ` k : type(k)

(x : T ) ∈ Γ

Γ ` x : T

Γ, x : T1 `M : T2

Γ ` λ(x : T1).M : T1 → T2

Γ `M : T1 → T2 Γ ` N : T ′1 T1 ∼ T ′1
Γ `M N : T2

Γ `M : ? Γ ` N : T
Γ `M N : ?

Γ `M : T1 Γ ` N : T2

Γ ` 〈M,N〉 : T1 × T2

Γ ` 〈M,N〉 : T1 × T2

Γ ` fst M : T1

Γ ` 〈M,N〉 : T1 × T2

Γ ` snd M : T2

Γ ` 〈M,N〉 : ?

Γ ` fst M : ?

Γ ` 〈M,N〉 : ?

Γ ` snd M : ?

Figure 2. The grammar and the typing rules for the source language.

Γ `M : ? Γ ` N : T
Γ `M N : ?

Figure 1 defines base types to be the unit type (), Booleans Bool, and integers Int. Types are

the dynamic type, base types, and structural types (Functions and Pairs). All of the types, except

for ?, classify unboxed values, e.g. Int is the type of native integers. On the other hand, values of

the dynamic type are values of all other types tagged with their runtime type.

The type precision relation v (a.k.a naive subtyping) is a partial ordering on types where related

types are consistent and the type on the left has more information than the type on the right. For

example Int → Int v Int → ? v ? but Int → ? 6v ? → Int. This relation plays a central role in

monotonic references as we shall see in the next chapter.
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Typing rules for the target language Γ `M : T

Γ ` k : type(k)

(x : T ) ∈ Γ

Γ ` x : T
Γ `M : T

Γ `M〈T ⇒ T ′〉 : T ′ Γ ` error : T

Γ, x : T1 `M : T2

Γ ` λ(x : T1).M : T1 → T2

Γ `M : T1 → T2 Γ ` N : T1

Γ `M N : T2

Γ `M : T1 Γ ` N : T2

Γ ` 〈M,N〉 : T1 × T2

Γ ` 〈M,N〉 : T1 × T2

Γ ` fst M : T1

Γ ` 〈M,N〉 : T1 × T2

Γ ` snd M : T2

Cast insertion Γ `M ↪→ N : T

(x : T ) ∈ Γ

Σ | Γ ` x ↪→ x : T

Σ | x : T1,Γ `M ↪→ N : T2

Σ | Γ ` λ(x : T1).M ↪→ λ(x : T1). N : T1 → T2

Σ | Γ `M ↪→M ′ : T1 → T2 Σ | Γ ` N ↪→ N ′ : T ′1
Σ | Γ `M N ↪→M ′ (N ′〈T ′1 ⇒ T1〉) : T2

Σ | Γ `M ↪→M ′ : ? Σ | Γ ` N ↪→ N ′ : T

Σ | Γ `M N ↪→ (M ′〈?⇒ (?⇒ ?)〉) (N ′〈T ⇒ ?〉) : ?

Σ | Γ `M ↪→M ′ : T1 Σ | Γ ` N ↪→ N ′ : T2

Σ | Γ ` 〈M,N〉 ↪→ 〈M ′, N ′〉 : T1 × T2

Σ | Γ `M ↪→ N : T1 × T2

Σ | Γ ` fst M ↪→ fst N : T1

Σ | Γ `M ↪→ N : T1 × T2

Σ | Γ ` snd M ↪→ snd N : T2

Σ | Γ `M ↪→ N : ?

Σ | Γ ` fst M ↪→ fst (N〈?⇒ ?× ?〉) : ?

Σ | Γ `M ↪→ N : ?

Σ | Γ ` snd M ↪→ snd (N〈?⇒ ?× ?〉) : ?

Figure 3. Static semantics for the target language.

Figure 2 presents the syntax and typing rules for our gradually typed language. The typing

rules include the two rules I presented earlier in addition to rules for the rest of the syntax where

there is two rules for each elimination form and the extra rule handles the case where the expression

being eliminated is typed at ?.

2. Operational Semantics

The dynamic semantics of the gradually typed lambda calculus is defined by a type-directed trans-

lation to the simply typed lambda calculus with explicit casts (a.k.a the cast calculus) and each

use of consistency between types T and T ′ in the type system becomes an explicit cast from T to

T ′. The compilation of gradually-typed terms into the cast calculus is otherwise straightforward

and is defined in Figure 3.
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Runtime structures

Values v ::= k | λ(x : T ). e | 〈v, v〉 | v〈T ⇒ ?〉 | v〈T1 → T2 ⇒ T ′1 → T ′2〉
Frames F ::= 2 e | v2 | 〈2, e〉 | 〈v,2〉 | fst 2 | snd 2 | 2〈T ⇒ T ′〉

Cast reduction rules e −→c e

v〈T ⇒ T 〉 −→c v
v〈I ⇒ ?〉〈?⇒ J〉 −→c v〈I ⇒ J〉

v〈I ⇒ J〉 −→c error if I � J
〈v1, v2〉〈T1 × T2 ⇒ T ′1 × T ′2〉 −→c 〈v1〈T1 ⇒ T ′1〉, v2〈T2 ⇒ T ′2〉〉

Program reduction rules e −→ e

(λ(x : T ).M) v −→ [x := v]M
(v1〈T1 → T2 ⇒ T ′1 → T ′2〉) v2 −→ (v1 (v2〈T ′1 ⇒ T1〉))〈T2 ⇒ T ′2〉

fst 〈v1, v2〉 −→ v1

snd 〈v1, v2〉 −→ v2

Cast
e −→c e

′

e −→ e′
Cong

M −→ N
F[M ] −→ F[N ]

CongErr
F[error] −→ error

Figure 4. Simple operational semantics for gradual typing

The dynamic semantics of casts is closely related to the semantics of contracts [Findler and

Felleisen, 2002a, Gray et al., 2005], coercions [Henglein, 1994], and interlanguage migration [Tobin-

Hochstadt and Felleisen, 2006, Matthews and Findler, 2007]. Because of the shared mechanisms

with these other lines of research, much of the ongoing research in those areas benefits the theory

of gradual typing, and vice versa [Guha et al., 2007, Matthews and Ahmed, 2008, Greenberg et al.,

2010, Dimoulas et al., 2011, Strickland et al., 2012, Chitil, 2012, Dimoulas et al., 2012, Greenberg,

2015].

Before discussing the operational semantics, I define injectable types as types that are allowed

to be cast to the dynamic type, which are base types and structural types (Functions and Pairs).

I, J ::= B | T → T | T × T

Figure 4 presents the definitions of values and frames and lists the reduction rules. In contrast

to the simply typed lambda calculus, the gradually typed lambda calculus includes two extra values,

the first is v〈I ⇒ ?〉, a value of the dynamic type which is an arbitrary value v tagged with its

type I. Furthermore, the values of the function type now includes normal functions and proxied

functions (functions that were cast) v〈T1 → T2 ⇒ T ′1 → T ′2〉.
Cast expressions are reduced as follows. If the source and target types are the same, the cast

expression is reduced to just the value. Furthermore, if there is a cast to a type J on a dynamic

value tagged with the type I, the expression reduces to a value with a cast from I to J . Moreover,
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if the source and target types of the cast are not consistent, the expression reduces to error.

Finally, a cast expression on a pair reduces to a pair expression where each projection is cast with

the corresponding cast. But what happens when a function value gets cast? A function proxy is

created, wrapping the old value and storing the type information of the cast. When such a proxy

is applied, the incoming arguments get cast to the type of the underlying function. Furthermore,

after the function application finishes, the return value get cast to the proxy return type. We shall

see that these proxies pose performance challenges.

3. Performance Challenge

Consider the classic example of Herman et al. [2007] shown in Figure 5. Two mutually recursive

functions, even? and odd?, are written in GTLC+. This example uses continuation passing style

to concisely illustrate efficiency challenges in gradual typing. While this example is contrived, the

same problems occur in real programs under complex situations [Feltey et al., 2018]. On the left

side of the figure we have a partially typed function, named even?, that checks if an integer is

even. On the right side of the figure we have a fully typed function, named odd?, that checks if

an integer is odd. With gradual typing, both functions are well typed because implicit casts are

allowed to and from Dyn. For example, in even? the parameter n is implicitly cast from Dyn to Int

when it is used as the argument to = and -. These casts check that the dynamic value is tagged

as an integer and perform the conversion needed between the representation of tagged values and

integers. Conversely, the value #t is cast to Dyn because it is used as the argument to a function

that expects Dyn. This cast tags the value with runtime type information so that later uses can be

checked. Likewise, in odd? the Int passed as the first argument to even? is cast to Dyn.

The types of the variables named k, (Dyn -> Bool) and (Bool -> Bool) are consistent with each

other. As such, when k is passed as an argument to even? or odd?, there is an implicit cast between

these two types. This cast is traditionally implemented by wrapping the function with a proxy

that checks the argument and return values [Findler and Felleisen, 2002a], but Herman et al. [2007]

observe that the value of k passes through this cast at each iteration, causing a build up of proxies

that changes the space complexity from constant to O(n).

In this dissertation I consider two approaches to the implementation of runtime casts: tradi-

tional casts, which I refer to as type-based casts, and coercions. Type-based casts provide the most
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(define even? : (Dyn (Dyn -> Bool) -> Bool)

(lambda ([n : Dyn] [k : (Dyn -> Bool)])

(if (= n 0)

(k #t)

(odd? (- n 1) k))))

(define odd? : (Int (Bool -> Bool) -> Bool)

(lambda ([n : Int] [k : (Bool -> Bool)])

(if (= n 0)

(k #f)

(even? (- n 1) k))))

Figure 5. Gradually typed even? and odd? functions that have been written in
continuation passing style.

straightforward implementation, but the proxies they generate can accumulate and consume an

unbounded amount of space as discussed above.

Getting back to the even? and odd? example, I compare the time and space usage of type-based

casts versus coercions in Figure 7 (left hand side). The three plots show the runtime, number of

casts performed, and length of the longest chain of proxies, as the input parameter n is increased.

The plot concerning longest proxy chains shows that type-based casts accumulate longer chains of

proxies as we increase parameter n. On the other hand, coercions use a constant amount of space

by compressing these proxies chains into a single proxy of constant size.

The appearance of long proxy chains can also change the time complexity of a program. I

refer to such a change as a catastrophic slowdown. Figure 6 shows the code for the quicksort

algorithm. The program is statically typed except for the the vector parameter of sort!. The

single Dyn annotation in this type causes runtime overhead inside the auxiliary partition! and

swap! functions. Like function types, reference types require proxies that apply casts during read

and write operations. Again, a naive implementation of casts allows the proxies to accumulate;

each recursive call to sort! causes a cast that adds a proxy to the vector being sorted. In quicksort,

this changes the worst-case time complexity from O(n2) to O(n3) because each read (vector-ref)

and write (vector-set!) traverses a chain of proxies of length O(n).

Returning to Figure 7, but focusing on the right-hand side plots for quicksort, we observe that,

for typed-based casts, the longest proxy chain grows as we increase the size of the array being sorted.

On the other hand, coercions do extra work at each step to compress the cast. As a result they

pay more overhead for each cast, but when they use the cast value later the overhead is guaranteed

17



(define sort! : ((Vect Int) Int Int -> ())

(lambda ([v : (Vect Dyn)]

[lo : Int] [hi : Int])

(when (< lo hi)

(let ([pivot : Int (partition! v lo hi)])

(sort! v lo (- pivot 1))

(sort! v (+ pivot 1) hi)))))

(define swap! : ((Vect Int) Int Int -> ())

(lambda ([v : (Vect Int)] [i : Int] [j : Int])

(let ([tmp : Int (vector-ref v i)])

(vector-set! v i (vector-ref v j))

(vector-set! v j tmp1))))

(define partition! : ((Vect Int) Int Int -> Int)

(lambda ([v : (Vect Int)] [l : Int] [h : Int])

(let ([p : Int (vector-ref v h)]

[i : (Ref Int) (box (- h 1))])

(repeat (j l h)

(when (<= (vector-ref v j) p)

(box-set! i (+ (unbox i) 1))

(swap! v (unbox i) j)))

(swap! v (+ (unbox i) 1) h)

(+ (unbox i) 1))))

Figure 6. The sort! function implements the Quicksort algorithm in the GTLC+.

to be constant. This can be seen in the way the runtime grows rapidly for type-based casts, while

coercions remain (relatively) low. I confirmed via polynomial regression that the type-based cast

implementation’s runtime is modeled by a third degree polynomial, i.e. O(n3).

Review of Coercions

Coercions are combinators that specify how to convert from one type to another type. The

following grammar shows the coercions needed to represent casts between types that include the

unknown type Dyn, base types (units, integers, and Booleans), function types, and pairs.

c, d ::= I? | I! | ι | ⊥ | c→ d | c× d

The coercion I? is a projection that checks whether a tagged value is of type I. If it is, the

underlying value is returned. If not, an error is signaled. The coercion I! in an injection that tags

a value with its type. The identity coercion ι just returns the input value. The failure coercion ⊥
signals an error when applied to a value. A function coercion c→ d changes the type of a function
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Figure 7. The runtime, number of casts, and longest proxy chain (y-axes) as we
increase the parameter n (x-axis) for even/odd (left) and the array length (x-axis)
for quicksort (right). The plots for longest proxy chain show that coercions compress
casts and thus operate in constant space. The plot of runtime for quicksort shows
that long proxy chains can also increase the asymptotic time complexity of an
algorithm.

by applying c to the argument and d to the return value. A pair coercion c × d changes the type

of a pair by applying c to the first projection and d to the second.

When two coercions are applied in sequence, they are composed. However, composing coercions

requires that sequences of compositions are treated as equal up to associativity. Siek et al. [2015a]

defines a normal form for coercions along with a composition operator, written c # d, that takes

two coercions in normal form and directly computes the normal form of sequencing them together.

The Grift compiler implements this approach using efficient bit-level representations.
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CHAPTER 3

Review of Monotonic References

There are a few different gradual typing systems with mutable references in the literature. For

instance, Siek and Taha [2006] present one design for mutable references where reference types are

invariant with respect to consistency. In this design, implicit casts are disallowed between different

pointed-to types. However, because of this limitation, it has been shown that this design does not

satisfy the gradual guarantee [Siek et al., 2015b], a property that ensures proper behavior when

changing types in a program. Proxied references [Herman et al., 2007, 2010] fixes this issue by

allowing implicit casts between different pointed-to types if those types are consistent. To ensure

type safety, cast addresses are wrapped in proxies which perform runtime type-checking at read and

write sites. However, this design suffers from overheads in statically typed code regions because

of the dynamic dispatch on incoming values. Monotonic references [Siek and Vitousek, 2013, Siek

et al., 2015c] solves this efficiency problem by casting the heap cell directly instead of creating a

proxy.

In this chapter, earlier work on monotonic references [Siek and Vitousek, 2013] is reviewed. The

chapter is organized as follows: Section 1 extends the source language with references. Section 2

gives a formal account of a simple variant of proxied references and explains the efficiency issues with

that semantics. Section 3 presents a high level overview of monotonic references and the motivation

behind its design. Section 4 presents the first formal definition of monotonic references [Siek and

Vitousek, 2013], an abstract machine for monotonic references that is mechanized in Isabelle/HOL,

and discusses how this semantics solves the efficiency issue presented in Section 2.

1. Adding References to the Gradually Typed Lambda Calculus

Figure 1 extends the set of types in the gradually typed lambda calculus with the reference type.

The reference type Ref T , where T is the type of the pointed-to value, is added to the set of injectable

types. The type constructor Ref is covariant, so the consistency and type precision relations are
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Injectable types I, J ::= · · · | Ref T
Heap typing Σ ::= ∅ | Σ, a : T

Consistency T ∼ T

. . .
T1 ∼ T2

Ref T1 ∼ Ref T2

Type precision T v T

. . .
T1 v T2

Ref T1 v Ref T2

Figure 1. Extending types and relations on them (defined in Figure 1 in Chapter 2)
with references.

The syntax of the source language

Expressions e,M,N ::= · · · | ref e | !e | e := e

Typing rules for the source language Γ `M : T

...

Σ | Γ `M : T

Σ | Γ ` ref M : Ref T
Γ `M : Ref T

Γ ` !M : T
Γ `M : ?
Γ ` !M : ?

Γ `M : Ref T Γ ` N : T ′ T ∼ T ′
Γ `M := N : ()

Γ `M : ? Γ ` N : T
Γ `M := N : ()

Figure 2. Extending the typing rules for the source language (defined in Figure 2
in Chapter 2) with references.

extended accordingly. Heap typing is an association list of addresses and types. Σ(a) = T indicates

that the address a has type T in Σ.

Figure 2 presents the typing rules for references. A new reference is allocated by the form

ref M and the pointed-to value is read by the form !M and is updated by the form M := N . The

typing rules for those forms in the source language are standard [Herman et al., 2007, 2010] and

they allow reading from and writing to either a reference or a dynamic expression.

Target languages with different semantics for references will be presented throughout the thesis.

2. The Efficiency Problem in Proxied References

Figure 3 extends the semantics of the gradually typed lambda calculus, presented in Figures 3

and 4 in Chapter 2, with proxied references. The semantics uses the space-inefficient type-based

representation of casts to simplify the presentation. However, the reader interested in the space-

efficient semantics can refer to the literature [Herman et al., 2007, 2010]. The typing judgment

relation for the target language becomes a quaternary relation, as it now also relates store typings

in addition to contexts, expressions, and types. The typing rules for the target language are also
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Typing rules for the target language Σ | Γ `M : T

. . . WT-Addr
Σ(a) = T

Σ | Γ ` a : Ref T

Σ | Γ `M : T

Σ | Γ ` ref M : Ref T

Σ | Γ `M : Ref T

Σ | Γ ` !M : T

Σ | Γ `M : Ref T Σ | Γ ` N : T

Σ | Γ `M := N : ()

Cast insertion Γ `M ↪→ N : T

. . . Γ `M ↪→ N : T
Γ ` ref M ↪→ ref N : Ref T

Γ `M ↪→ N : Ref T
Γ ` !M ↪→ !N : T

Γ `M ↪→ N : ?
Γ ` !M ↪→ !(N〈?⇒ Ref ?〉) : ?

Γ `M ↪→M ′ : Ref T Γ ` N ↪→ N ′ : T ′ T ∼ T ′
Γ `M := N ↪→M ′ := (N ′〈T ′ ⇒ T 〉) : ()

Γ `M ↪→M ′ : ? Γ ` N ↪→ N ′ : T
Γ `M := N ↪→ (M ′〈?⇒ Ref ?〉) := (N ′〈T ′ ⇒ ?〉) : ()

Runtime structures

Values v ::= · · · | a | v〈Ref T ⇒ Ref T ′〉
Heap µ ::= ∅ | µ(a 7→ v)
Frames F ::= · · · | ref 2 | !2 | v := 2

Program reduction rules e, µ −→ e, µ

. . .

ref v, µ −→ a, µ(a 7→ v) if a 6∈ dom(µ)(Alloc)

!a, µ −→ µ(a), µ(Read)

!(v〈Ref T ⇒ Ref T ′〉), µ −→ (!v)〈T ⇒ T ′〉, µ(ProxyRead)

a := v, µ −→ Unit, µ(a 7→ v)(Write)

(v〈Ref T ⇒ Ref T ′〉) := v′, µ −→ v := (v′〈T ′ ⇒ T 〉), µ(ProxyWrite)

Figure 3. Extension of the target language (Figures 3 and 4 in Chapter 2) with
proxied references.

standard and the key rule WT-Addr says that the type of any allocated address has to match the

type of the pointed-to heap cell. Later on, it will be shown that the corresponding typing rule for

monotonic references is slightly different to allow monotonic changes to the types of heap cells. The

heap for proxied references is well typed, written Σ ` µ, if and only if dom(Σ) = dom(µ) and ∀a ∈
dom(Σ). Σ | ∅ ` µ(a) : Σ(a).

Heaps are maps from addresses to values. The program reduction relation −→ becomes qua-

ternary and relates the old and new heaps in addition to the old and new expressions. Moreover,

the set of values is extended with the two valid values of a reference type: an address and a value
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wrapped in a proxy that holds a reference cast. The program reduction relation has a rule for

each combination of a reference value and operation. The Read and Write rules reduce reference

operations on addresses, where the former rule reduces to the value mapped to that address and

keeps the heap the same and the latter rule reduces to a unit and a new heap where the address

maps to the new value. Furthermore, The ProxyRead and ProxyWrite rules reduce reference

operations on proxied values, where the former rule performs a type check to see whether the read

value from the heap respects the cast carried by the proxy. In particular, ProxyRead reduces to

another read expression that is cast from the source pointed-to type to the target pointed-to type.

On the other hand, ProxyWrite performs a type check to see whether the value that is about

to be written to the heap respects the cast carried by the proxy. In other words, ProxyWrite

reduces the write expression into another where the written value is cast from the target pointed-to

type to the source pointed-to type.

As explained, there are two different kinds of values for proxied references and reduction has to

handle each kind for each reference operation. This is implemented in practice by dynamic dispatch

on the incoming value. Figure 4 presents the C code for the ref_read function that performs a

read on a value of the proxied reference type. A version of this function is called in compiled code

by Grift (in the type-based casts and proxied references mode) for a read operation. A dynamic

dispatch is performed (at line 5) to check whether the incoming value is proxied and act accordingly.

This dynamic dispatch can affect performance negatively and is performed even in statically typed

code regions. This prevents the performance of statically typed code in a gradually typed language

from being on par with the performance of statically typed languages.

3. Introduction to Monotonic References

With gradual typing, programmers can initially prototype their programs quickly as dynamically

typed, without paying the mental overhead of ensuring consistent typing up-front. Later, they

can gradually add type annotations to their programs until they become statically typed or typed

enough to unlock the best performance. However, if that performance is not on par with the

performance of existing statically typed programming languages, adaptability of gradual typing

could be at risk, especially in domains that require high performance.

Monotonic references is another design for gradually typed mutable references that does not

have the performance problem in proxied references discussed in the last section. The motivation

23



1 int64_t apply_cast(int64_t value, int64_t source, int64_t target);

2 bool is_ref_proxied(int64_t value);

3

4 int64_t ref_read(int64_t val) {

5 if (is_ref_proxied val) {

6 int64_t underlying_val = ref_proxy_val(val);

7 int64_t source_type = ref_proxy_source(val);

8 int64_t target_type = ref_proxy_target(val);

9 int64_t read_val = ref_read(underlying_val);

10 return apply_cast(read_val, source_type, target_type);

11 } else {

12 return *((int64_t *) val);

13 }

14 }

Figure 4. The C code for the ref_read function that performs a read on a value
of the proxied reference type.

Static types I T

I B
I T1 I T2

I T1 → T2

I T1 I T2

I T1 × T2

I T
I Ref T

Meet operation (greatest lower bound) T u T = T

? u T = T u ? = T B uB = B

Ref T1 u Ref T2 = Ref (T1 u T2)

(T1 × T2) u (T3 × T4) = (T1 u T3)× (T2 u T4)

(T1 → T2) u (T3 → T4) = (T1 u T3)→ (T2 u T4)

Figure 5. The definition of the static type predicate and the meet operation.

behind the design of monotonic references is to have a performance in statically typed code regions

on par with the performance of statically typed programming languages. In particular, mono-

tonic references ensures that read and write expressions can be compiled to just loads and stores,

something a typical statically typed programming language does. The key feature of monotonic

references is to have addresses only as the value of the reference type so there is no different kind

of values to do a dynamic dispatch on when performing a reference operation. This section gives a

high level overview of monotonic references.

Figure 5 defines relations and functions on types. The unary relation I is defined to hold for

types that do not contain the dynamic type ? anywhere.

When an address gets cast, the heap cell mapped to that particular address gets cast. In other

words, monotonic references does strong updates to the heap. Furthermore, the type of the cell
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is ensured to be consistent with the types of all references pointing to it, to maintain type safety

via an invariant, named the monotonic invariant. This invariant restricts the type of the heap

cell to be always more precise than the type of any reference pointing to it in the program and is

maintained as follows: when an address gets cast, the heap cell gets cast with a type that is the

result of combining the target type of the cast and the current type of the heap cell and that new

type is more precise than both those types. The u function [Siek and Wadler, 2010] creates that

new type by computing the greatest lower bound of the input types.

The monotonic invariant is key to unlock the best performance in statically typed code regions.

If an address is statically typed, then it must be the case that the value it points to has the same

type. This way, reading and writing expressions can be compiled in the same way they are compiled

in an efficient statically typed programming language, to loads and stores.

If the address is not statically typed, then it may be the case that the value on the heap has

a type that is different from the type of the address. In this case, a cast between those two types

needs to be performed when reading and writing.

The two cases can be distinguished by the cast insertion relation based on whether the type of

the reference is fully static.

4. The Monotonic Machine: Monotonic References for Gradual Typing

Monotonic references were first introduced as an abstract machine [Siek and Vitousek, 2013]. This

work is presented in this section and is referred to as the monotonic machine.

4.1. Type System. Figure 6 present the grammar and the typing rules of the target language.

The syntax is in A-normal form, so that complex computations are built from a sequence of variable

assignments. This representation makes sure expressions are not built from sub-expressions, which

simplifies the presentation of operational semantics and type safety proofs because there is no need

for evaluation contexts or congruence rules. An in-depth argument for this technique can be found

in Siek’s Five Easy Lemmas series [Siek, 2012a,b].

Expressions are constant literals, functions, applications of built-in operators, pairs, and read-

ing from a statically typed reference. Statements are let-binding of complex expressions where the
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The syntax of the target language

Expressions e,M,N ::= k | x | λ(x : T ).S | op e | 〈e, e〉 | !e
Statements S ::= let x = e in S | return e | let x = e e in S | return e e |

let x = ref e@T in S | e := e; S | e := e@T ; S |
let x = !e@T in S | let x = e〈T ⇒ T 〉 in S

Typing rules for the target language Γ `M : T

Γ ` k : type(k)

(x : T ) ∈ Γ

Γ ` x : T

op-type(op) = T1 → T2 Γ `M : T1

Γ ` opM : T2

Γ, x : T1 ` S : T2

Γ ` λ(x : T1).S : T1 → T2

Γ `M : T1 Γ ` N : T2

Γ ` 〈M,N〉 : T1 × T2

Γ `M : Ref T IT
Γ ` !M : T

Statement typing for the target language Γ ` S : T

Γ `M : T1 Γ, x : T1 ` S : T2

Γ ` let x = M in S : T2

Γ `M : T
Γ ` return M : T

Γ `M : T1 → T2 Γ ` N : T1 Γ, x : T2 ` S : T3

Γ ` let x = M N in S : T3

Γ `M : T1 → T2 Γ ` N : T1

Γ ` return (M N) : T2

Γ `M : T Γ, x : Ref T ` S : T ′

Γ ` let x = ref M@T in S : T ′
Γ `M : Ref T Γ ` N : T I T Γ ` S : T ′

Γ `M := N ; S : T ′

Γ `M : Ref T Γ ` N : T Γ ` S : T ′

Γ `M := N@T ; S : T ′
Γ `M : Ref T Γ, x : T ` S : T ′

Γ ` !M@T ; S : T ′

Γ `M : T1 Γ, x : T2 ` S : T3

Γ ` let x = M〈T1 ⇒ T2〉 in S : T3

Figure 6. Typing rules for expressions and statements in the monotonic machine.

bound variable is in the scope of another statement. Complex expressions include simple expres-

sions, reference allocation, writing into a statically typed reference, reading from and writing into

a reference that is not statically typed, and a cast expression.

There are two syntactic forms for reading from and writing into a reference. let x = !e@T in S
and e := e@T ;S are used for references that are not statically typed. They record the type of the

reference (the type annotation T ) to be used to perform the mediating cast. As explained earlier,

the mediating cast is performed because the type of the value on the heap does not necessarily have

the same type T . On the other hand, the syntactic forms !e and e := e in S are used for statically

typed references as their typing rules require the reference types to satisfy the predicate I. The

operational semantics for those forms are efficient and those forms could be compiled to loads and

stores. The typing rules for all other forms are standard.
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Runtime structures

Values v ∈ V ::= k | 〈λ(x : T ). e, ρ〉 | 〈v, v〉 | v〈T ⇒ ?〉 | a
Environments ρ ∈ E ::= ∅ | ρ, x : v
Delayed casts dc ::= v | v〈T ⇒ T 〉
Heaps µ ::= ∅ | µ(a 7→ v : T )
Evolving heaps ν ∈ H ::= µ | ν(a 7→ dc : T )

Environments typing rules Σ | Γ ` ρ

Σ | ∅ ` ∅ Σ ` v : T Σ | Γ ` ρ
Σ | Γ, x : T ` ρ, x : v

Values typing rules Σ ` v : T

Σ ` k : type(k)

Σ(a) v T
Σ ` a : Ref T

Σ, x : T1 ` S : T2 Σ | Γ ` ρ
Σ ` 〈λx : T1.S, ρ〉 : T1 → T2

Σ ` v1 : T1 Σ ` v2 : T2

Σ ` 〈v1, v2〉 : T1 × T2

Σ ` v : T
Σ ` v〈T ⇒ ?〉

Delayed casts typing rules Σ ` dc : T

Σ ` v : T
Σ ` v : T T ′ v T
Σ ` v〈T ⇒ T ′〉 : T ′

Figure 7. Typing rules for runtime structures in the monotonic machine.

Figure 7 present the definition of the runtime structures along with typing rules for them.

Environments are association lists of variables and values. Furthermore, heaps for monotonic

references are unusual in two ways. First, every heap cell is tagged with its type. For convenient

access, the type of a heap cell is stored next to the cell in the heap, and is referred to as the run-time

type information (RTTI). Second, In addition to values, heaps also could contain cast expressions,

called delayed casts. Delayed casts are arbitrary casts on values and are stored on the heap to ensure

the correctness of cast reduction in the presence of cyclic values. The need for storing delayed casts

on the heap will be explained in detail after presenting the operational semantics. ν(a 7→ dc : T )

indicates that the address a in the heap ν maps to a heap cell that contains the delayed cast dc

and the cell is tagged with the type T . Furthermore, ν(a)val and ν(a)rtti are functions to read both

components of the heap cell mapped to address a in the heap ν.

The typing rule for addresses allow the address to have a type that is different from the type of

the heap cell. However, the rule enforces the monotonic invariant by requiring the type of heap cell

to be more precise than the type of the address. The typing rules for other values are standard.

However for delayed casts, the target type of the cast is required to be more precise than the source

type. This makes sure that the heap can be cast only to a more precise type.
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Activation lists γ ∈ A ::= ∅ | γ, a
Cast result r ∈ R ::= (v, ν, γ) | error

Type grounding function b c : T → T

b?c = ? bBc = B bT1 → T2c = ?→ ? bT1 × T2c = ?× ? bRef T c = Ref ?

Cast application function apply-cast : V × T × T ×H×A → R

apply-cast(a,Ref ,Ref T, ν, γ) = (a, ν, γ) if ν(a)rtti = ν(a)rtti u T
apply-cast(a,Ref ,Ref T1, ν, γ) = (a, ν(a 7→ v〈T2 ⇒ T3〉 : T3), (a, γ))

if

 ν(a) = v : T2,
T3 = T1 u T2,
T3 6= T2

apply-cast(a,Ref ,Ref T1, ν, γ) = (a, ν(a 7→ v〈T2 ⇒ T4〉 : T4), (a, γ))

if

 ν(a) = v〈T2 ⇒ T3〉 : T3,
T4 = T1 u T3,
T4 6= T3

apply-cast(〈v1, v2〉, T1 × T2, T3 × T4, ν, γ) = (〈v′1, v′2〉, ν ′′, γ′′)
if

{
apply-cast(v1, T1, T3, ν, γ) = (v′1, ν

′, γ′),
apply-cast(v2, T2, T4, ν

′, γ′) = (v′2, ν
′′, γ′′)

apply-cast(v,B,B, ν, γ) = (v, ν, γ)
apply-cast(v, ?, ?, ν, γ) = (v, ν, γ)
apply-cast(v, I, ?, ν, γ) = (v〈I ⇒ ?〉, ν, γ)

apply-cast(f, T1 → T2, T3 → T4, ν, γ) = (〈(λ(x : T3). let y = x〈T3 ⇒ T1〉 in let z = f y
in let w = z〈T2 ⇒ T4〉 in return w), (∅, f : f)〉,
ν, γ)

apply-cast(v〈T ⇒ ?〉, ?, I, ν, γ) = apply-cast(v, T, I, ν, γ) if bT c = bIc
apply-cast(v, T, T ′, ν, γ) = error

Figure 8. Cast dynamic semantics for the monotonic machine.

4.2. Dynamic Semantics of Casts. Figure 8 present the function apply-cast that applies a

cast on a value and could update the heap in the case of a cast on a reference. It takes a value to

cast, the source type, the target type, the heap, and an activation list. The activation list is a list

of addresses that maps to heap cells that possibly contain delayed casts that need to be reduced to

normal values. The function apply-cast returns a tuple of the new value, the updated heap, and

the updated activation list, and could possibly error.

There are four cases when casting an address. First, if the greatest lower bound of the target

type and the RTTI is the same as the RTTI, then there is no need to cast the heap cell, so the

heap stays the same. Second, if the greatest lower bound is a different type, then the heap needs

to be updated and there is two cases here. If the heap contains a value, a delayed cast is created

from that value and the cast from the old RTTI to the new computed type and is written to the
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Expression evaluation function J K : E× E ×H → V
JxKρ µ = ρ(x)
JkKρ µ = k

Jop eKρ µ = δ op (JeKρ µ)

J〈M,N〉Kρ µ = 〈(JMKρ µ), (JNKρ µ)〉
Jλ(x : T ).SKρ µ = 〈λ(x : T ).S, ρ〉

J!eKρ µ = µ(JeKρ µ)val

Figure 9. Expression evaluation in the monotonic machine.

heap. On the other hand, if there is already a delayed cast on the heap, the old cast on the value

is discarded and a new cast is created from the source type of the old cast to the new computed

type and the new delayed cast is written to the heap as well. Furthermore, in both previous cases,

the address being cast is added to the activation list so that the new delayed cast on the heap is

signaled to be reduced. Finally, if the greatest lower bound is undefined, apply-cast errors.

In the case of pairs, apply-cast is applied to both projections from left to right and a pair of

the results is returned. If the source and target types are matching base types or the dynamic

type, the input value is returned as is. If a value is cast to the dynamic type and the value itself

is not dynamic, a dynamic value is returned. If a dynamic value gets cast to a type that is not

dynamic, the underlying value gets cast to the target type. If the value being cast is a function f , f

gets wrapped in another function that casts the argument to f from the new argument type to the

type of the argument f expects, and casts the return value from the return type of f to the new

one. Note that this semantics is not space-efficient because functions get wrapped in these proxies

every time they get cast, causing a space-leak. Furthermore, when such a function gets applied,

a possibly long chain of casts gets applied before and after the underlying closure gets applied,

causing a significant runtime overhead. Finally, the function apply-cast errors on all other cases.

4.3. Dynamic Semantics of Programs. Figure 9 present the evaluation function for ex-

pressions. In the case of reading from a statically typed reference, the statically typed value on the

heap is returned. The evaluation of all other expressions is standard.

Figure 10 presents the state transition rules for the abstract machine. Transition rules relate

configuration states consisting of five parts, a statement to reduce, an environment, the procedure

call stack, the heap, and the activation list. The first four rules are transitions in the case of a

non-empty activation list. All delayed casts have to be reduced to normal values so that the heap is

in a normal state before resuming program reduction. The FalsePositive rule discards addresses

from the activation list that map to cells with normal values. NoRTTIChange reads a delayed

cast from the heap, reduces it to a value, and writes the result back to the heap if the RTTI did not
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Procedure call stack k ::= ∅ | (x,S, ρ), k
States s ::= 〈S, ρ, k, ν, γ〉 | error

State transition rules s −→ s

FalsePositive
ν(a) = v : T

〈S, ρ, k, ν, (a, γ)〉 −→ 〈S, ρ, k, ν, γ〉

NoRTTIChange

ν(a) = v〈T1 ⇒ T2〉 : T2 apply-cast(v, T1, T2, ν, (a, γ)) = (v′, ν ′, γ′)
ν ′(a)rtti = T2

〈S, ρ, k, ν, (a, γ)〉 −→ 〈S, ρ, k, ν ′(a 7→ v′ : T2), γ′〉

RTTIChanged

ν(a) = v〈T1 ⇒ T2〉 : T2 apply-cast(v, T1, T2, ν, (a, γ)) = (v′, ν ′, γ′)
ν ′(a)rtti 6= T2

〈S, ρ, k, ν, (a, γ)〉 −→ 〈S, ρ, k, ν ′, γ′〉

Error1
ν(a) = v〈T1 ⇒ T2〉 : T2 apply-cast(v, T1, T2, ν, (a, γ)) = error

〈S, ρ, k, ν, (a, γ)〉 −→ error

Alloc
JMKρ µ = v a = |µ|

〈(let x = ref M@T in S), ρ, k, µ, ∅〉 −→ 〈S, (ρ, x : a), k, (µ, (a, v : T )), ∅〉

Write
JMKρ µ = a JNKρ µ = v µ(a) = v′ : T

〈(M := N ;S), ρ, k, µ, ∅〉 −→ 〈S, ρ, k, µ(a 7→ v : T ), ∅〉

DynRead
JMKρ µ = a µ(a) = v : T ′ apply-cast(v, T ′, T, µ, ∅) = (v′, ν, γ)

〈(let x = !M@T in S), ρ, k, µ, ∅〉 −→ 〈S, (ρ, x : v′), k, ν, γ〉

FailedDynRead
JMKρ µ = a µ(a) = v : T ′ apply-cast(v, T ′, T, µ, ∅) = error

〈(let x = !M@T in S), ρ, k, µ, ∅〉 −→ error

DynWrite
JMKρ µ = a JNKρ µ = v µ(a) = v′ : T ′

〈(M := N@T ;S), ρ, k, µ, ∅〉 −→ 〈S, ρ, k, µ(a 7→ v〈T ⇒ T ′〉 : T ′), {a}〉

cast
JMKρ µ = v apply-cast(v, T, T ′, µ, ∅) = (v′, ν, γ)

〈(let x = M〈T ⇒ T ′〉 in S), ρ, k, µ, ∅〉 −→ 〈S, (ρ, x : v′), k, ν, γ〉

FailedCast
JMKρ µ = v apply-cast(v, T, T ′, µ, ∅) = error

〈(let x = M〈T ⇒ T ′〉 in S), ρ, k, µ, ∅〉 −→ error

JMKρ µ = v

〈(let x = M in S), ρ, k, µ, ∅〉 −→ 〈S, (ρ, x : v), k, µ, ∅〉
JMKρ µ = v JNKρ µ = v′ v′ = 〈λ(y : T ).S ′, ρ′〉

〈(let x = M N in S), ρ, k, µ, ∅〉 −→ 〈S ′, (ρ′, y : v′), ((x,S, ρ), k), µ, ∅〉
JMKρ µ = v JNKρ µ = v′ v′ = 〈λ(x : T ).S ′, ρ′〉
〈(return M N), ρ, k, µ, ∅〉 −→ 〈S ′, (ρ′, x : v′), k, µ, ∅〉

JMKρ µ = v

〈(return M), ρ, ((x,S, ρ′), k), µ, ∅〉 −→ 〈S, (ρ′, x : v), k, µ, ∅〉

Figure 10. The state transition rules for the monotonic machine.
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1 (: f Dyn)

2 (define f (lambda (x) x))

3 (: r Dyn)

4 (define r (box (cons f '())))

5 (set-box! r (cons f r)) ;; establish a cycle

6 (define (g [x : (Boxof (Pair (Dyn -> Integer) (Boxof (Pair (Integer -> Dyn) Dyn))))])

7 ((car (unbox x)) 42))

8 (g r)

Figure 11. A program written in a variant of Typed Racket syntax to demonstrate
the need for writing delayed casts to the heap.

change. RTTIChanged discards the result of the cast if the RTTI has changed. The intuition is

that if the RTTI has changed, this means that the heap already has a more precise value/delayed

cast, so the less precise value in hand can no longer be written to the heap. Finally, Error1

reduces to the error state if the reduction of the delayed cast raised an error.

The next five rules specify the operational semantics for reference operations. The Alloc rule

allocates a new heap cell by extending the heap by one element at the end. The RTTI is initialized

from the type annotation recorded in the syntactic form. This type is the type of the value of

the reference as found by the type-checker. The Write rule writes a value to a statically typed

reference and it does not perform any casts because the type of the written value matches the type

of the heap cell according to the monotonic invariant. The DynRead rule reads from a partially

typed reference and performs a cast from the RTTI to the type of the reference. FailedDynRead

handles the case when the cast raised an error. Finally, the DynWrite specifies how to write a

value to a partially typed reference. In particular, a delayed cast is written to the heap that casts

from the type of the written value to the RTTI.

The Cast and FailedCast rules are defined in terms of the apply-cast function. The rest of

the rules are standard.

To understand why the monotonic machine puts cast expressions on the heap, consider the

example in Figure 11 that creates a cycle in the heap, written in a variant of Typed Racket syntax

that supports the dynamic type Dyn to enable fine-grained gradual typing. (Typed Racket uses

the term “box” to mean reference. The Boxof type corresponds to the Ref type.). On line 2,

a reference is allocated at some address, call it a, and placed in variable r; the heap cell at a is

initialized with a pair of values of the dynamic type. On line 3, a cycle is created by assigning to
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r another pair whose second element is r. So at this point the heap is in the following state.

{a 7→ 〈(λ(x : ?). return x)〈?→ ?⇒ ?〉, a〈Ref (?× ?)⇒ ?〉〉 : ?× ?}

On line 6, function g is applied to r, but g expects a reference to a pair of type

(?→ Int)× Ref ((Int→ ?)× ?)

So a cast will be performed before proceeding with the function application. The cast reduces using

the cast tule that performs the call:

apply-cast(a, (Ref ?× ?), (Ref (?→ Int)× Ref ((Int→ ?)× ?)), µ, ∅)

which updates address a with the following expression, where the value part of the delayed cast is

colored purple and the cast is colored magenta:

a 7→〈(λ(x : ?). return x)〈?→ ?⇒ ?〉, a〈Ref (?× ?)⇒ ?〉〉〈?× ?⇒ (?→ Int)× Ref ((Int→ ?)× ?)〉

: (?→ Int)× Ref ((Int→ ?)× ?)

The call returns the address a, the updated heap ν, and the activation list (∅, a). Because the acti-

vation list is not empty, a step is taken via either NoRTTIChange or RTTIChanged, depending

on the heap returned from the call

apply-cast(〈(λ(x : ?). return x)〈?→ ?⇒ ?〉, a〈Ref (?× ?)⇒ ?〉〉, (?× ?),

((?→ Int)× Ref ((Int→ ?)× ?)), ν, (∅, a))

apply-cast casts the first projection first, then the second projection and returns the result value.

However, the pair has a dynamic address in the second projection causing the following cast appli-

cation:

apply-cast(a, (Ref (?× ?)), (Ref ((Int→ ?)× ?)), ν, (∅, a))

The address a is cast to the greatest lower bound of its current type and the target type of the

cast, which amounts to:

(Int→ Int)× Ref ((Int→ ?)× ?)

This cast is interesting because it causes another cast on the first element of the pair. This cast

will update the RTTI and the delayed cast on the heap to:
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a 7→〈(λ(x : ?). return x)〈?→ ?⇒ ?〉, a〈Ref (?× ?)⇒ ?〉〉〈?× ?⇒ (Int→ Int)× Ref ((Int→ ?)× ?)〉

: (Int→ Int)× Ref ((Int→ ?)× ?)

This means the top-level reduction is via the RTTIChanged rule because the RTTI has

changed during the apply-cast call, so the result of the call is not written to the heap and dis-

carded.

Proceeding with a reduction step via NoRTTIChange yields the following state.

a 7→ 〈(λ(x : ?). return x)〈?→ ?⇒ Int→ Int〉, a〉 : (Int→ Int)× Ref ((Int→ ?)× ?)

In the above sequence of reductions, it was crucial that the cast on the first element of the pair

to ? → Int was written to the heap before the first element was cast again to the type Int → ?,

enabling a greatest lower bound of Int→ Int that took both types into account.

4.4. Type Safety. The semantics is type safe and the proof is mechanized in Isabelle. The

reader interested in the proof details can refer to the paper [Siek and Vitousek, 2013].
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CHAPTER 4

λref
c : Reduction Semantics for Monotonic References

In the previous chapter, monotonic references were introduced via an abstract machine that

uses the type-based approach to represent casts. A subsequent work on monotonic references [Siek

et al., 2015c], will be referred to as λref, presents a different formalism of monotonic references

based on reduction semantics. Although it is known how to derive a reduction semantics from an

abstract machine [Biernacka and Danvy, 2009], there are still other differences between λref and

the machine. One major difference is in the representation of casts; the machine uses type-based

casts and λref uses coercions. Other differences will be discussed during the chapter.

As the first technical contribution of this dissertation, this chapter presents λref
c , a variant of

λref, that is mechanized in the Agda proof assistant and fixes a few problems in λref. The chapter is

organized as follows: Section 1 presents the type system, Section 2 presents the dynamic semantics,

and Section 3 presents the type safety proof and associated lemmas.

1. Static Semantics

Types and relations on them are the same as the ones in Figure 1 and 5 in Chapter 3. Furthermore,

a weaker notion of consistency, called shallow consistency [Siek and Wadler, 2010], is defined and it

relates the top-level type constructors only and does not require the subparts to be related. More

precisely:

? ^ T T ^ ? B ^ B T1 → T2 ^ T3 → T4 T1 × T2 ^ T3 × T4 Ref T1 ^ Ref T2

Shallow consistency is needed to implement lazy error detection.

The first major difference between the monotonic machine and λref/λref
c is that the latter use

coercions to represent casts. Coercions are combinators on types, originally designed for compile-

time optimization for dynamically typed languages [Henglein, 1994]. They were later used to

guarantee space-efficiency at run-time for gradual typing [Herman et al., 2007, 2010]. Although
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Coercions c, d ∈ C ::= ι | I! | I? | c→ d | c× d | Ref T | ⊥I,J
Inert coercions c ↑ ::= I! | c→ d
Active coercions c ↓ ::= ι | I? | c× d | Ref T | ⊥I,J

Coercion typing c : T =⇒ T

ι : T =⇒ T I! : I =⇒ ? I? : ? =⇒ I
I � J

⊥I,J : I =⇒ J

c : T ′1 =⇒ T1 d : T2 =⇒ T ′2
c→ d : T1 → T2 =⇒ T ′1 → T ′2

c : T1 =⇒ T ′1 d : T2 =⇒ T ′2
c× d : T1 × T2 =⇒ T ′1 × T ′2

Ref T ′ : Ref T =⇒ Ref T ′

Coercion creation (T ⇒ T ) = c

(?⇒ ?) = (B ⇒ B) = ι

(I ⇒ ?) = I! (?⇒ I) = I?

(I ⇒ J) = ⊥I,J if I 6^ J

(T1 → T2 ⇒ T ′1 → T ′2) = (T ′1 ⇒ T1)→ (T2 ⇒ T ′2)

(T1 × T2 ⇒ T ′1 × T ′2) = (T1 ⇒ T ′1)× (T2 ⇒ T ′2)

(Ref T ⇒ Ref T ′) = Ref T ′

Figure 1. Simple coercions and their operations.

λref uses coercions to represent casts, it does not have the space-efficiency guarantee. λref
c follows

suit and does not guarantee space-efficiency either.

Figure 1 presents the definition of coercions and a function to create them. There are many

different semantics for coercions [Siek et al., 2009]. λref
c uses the Lazy-D semantics that allows

any type, other than ? itself, to be injected to ?. A cast v〈c〉 applies a coercion c to the value v.

The identity coercion ι acts as the identity function. The coercion I! is an injection into ? that

tags v with the source type. The projection coercion I? projects the tagged value v from ? to I

by checking if the tag is consistent with I. If this is the case, the underlying value is returned.

The failure coercion ⊥I,J signals an error when the source type I and the target type J are not

consistent. The function coercion c→ d creates a proxy around the function v that applies coercion

c to the argument and coercion d to the return value. The pair coercion c × d applies coercion c

to the first projection of the pair, and coercion d to the second projection. Finally, the reference

coercion Ref T casts the value in the store to the greatest lower bound of T and the RTTI.

When applied to values, inert coercions, denoted c ↑, create new values and include the injection

and function coercions. All other coercions are active coercions, denoted c ↓. Lemma 1 asserts that

the two sets of coercions are mutually exclusive.

Lemma 1 (Inert and active coercions). ∀c : T =⇒ T ′, c ↑ or c ↓
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The syntax of the target language

Expressions e,M,N ::= · · · | e〈c〉 | a | ref e@T | !e | !e@T | e := e | e := e@T

Typing rules for the target language Σ | Γ `M : T

...

Γ `M : T c : T =⇒ T ′

Γ `M〈c〉 : T ′

Σ | Γ `M : T

Σ | Γ ` ref M@T : Ref T

Σ | Γ `M : Ref T IT
Σ | Γ ` !M : T

Σ | Γ `M : Ref T 6I T
Σ | Γ ` !M@T : T

Σ | Γ `M : Ref T Σ | Γ ` N : T IT
Σ | Γ `M := N : ()

Σ | Γ `M : Ref T Σ | Γ ` N : T 6I T
Σ | Γ `M := N@T : ()

WT-Addr
Σ(a) v T

Σ | Γ ` a : Ref T

Cast insertion Σ | Γ `M ↪→ N : T

...

CI-Allocation
Σ | Γ `M ↪→ N : T

Σ | Γ ` ref M ↪→ ref N@T : Ref T

CI-SRead
Σ | Γ `M ↪→ N : Ref T IT

Σ | Γ ` !M ↪→ !N : T

CI-Read
Σ | Γ `M ↪→ N : Ref T 6IT

Σ | Γ ` !M ↪→ !N@T : T

Σ | Γ `M ↪→ N : ? c = (?⇒ Ref ?)

Σ | Γ ` !M ↪→ !(N〈c〉)@? : ?

CI-SWrite
Σ | Γ `M ↪→M ′ : Ref T Σ | Γ ` N ↪→ N ′ : T ′ IT c = (T ′ ⇒ T )

Σ | Γ `M := N ↪→M ′ := (N ′〈c〉) : ()

CI-Write
Σ | Γ `M ↪→M ′ : Ref T Σ | Γ ` N ↪→ N ′ : T ′ 6IT c = (T ′ ⇒ T )

Σ | Γ `M := N ↪→M ′ := (N ′〈c〉)@T ′ : ()

Σ | Γ `M ↪→M ′ : ? Σ | Γ ` N ↪→ N ′ : T c = (?⇒ Ref ?) d = (T ⇒ ?)

Σ | Γ `M := N ↪→ (M ′〈c〉) := (N ′〈d〉)@? : ()

Figure 2. λref
c syntax and type system.

The syntax and the typing rules of the source language are the same as the ones in Figure 2 in

Chapter 3. Figure 2 presents the syntax and the typing rules for the target language. The syntactic

forms are similar to the ones for the abstract machine presented in Chapter 3, but they are not in
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Runtime structures

Values v ::= · · · | v〈c ↑〉 | a
Delayed Casts dc ::= v | dc〈c〉 | 〈dc, dc〉
Heap µ ::= ∅ | µ(a 7→ v : T )
Evolving Heap ν ::= µ | ν(a 7→ dc : T )

Frames F ::= · · · | 2〈c〉 | ref 2@T | !2@T | !2 | 2 := e@T | v := 2@T

Evaluation Contexts E ::= ∅ | F, E
Typing rules for delayed casts Σ | Γ ` dc : T

Γ ` v : T Γ ` dc : T c : T =⇒ T ′

Γ ` dc〈c〉 : T ′
Γ ` dc1 : T1 Γ ` dc2 : T2

Γ ` 〈dc1, dc2〉 : T1 × T2

Figure 3. λref
c runtime structures.

A-normal form. Furthermore, cast expressions, shaded in light gray, has changed to use coercions

to represent casts. The ref e@T form allocates a heap cell and initializes the RTTI field to the

type T . The syntactic forms !e and e := e read from and write into a statically typed reference

respectively. The typing rules for those forms require the type of the reference to satisfy the static

type predicate I. Dually, the syntactic forms !e@T and e := e@T are also for reading and writing

but on partially typed references and their typing rules require the type of the reference to not

satisfy the static type predicate, designated by the symbol 6I. This requirement was not present in

λref nor in the monotonic machine.

Asking the programmers to use both forms when appropriate would be inconvenient. Fortu-

nately, the compiler can automatically select which form to emit. The compilation from the source

language to the target language is given by the type-directed cast insertion relation defined in

Figure 2. It compiles to the right form of a reference operation based on the type of the refer-

ence. In particular, the CI-SRead and CI-SWrite rules check if the reference type is static to

compile to the corresponding efficient form. Dually, the CI-Read and CI-Write rules check if

the type of the reference is not static and compile to the forms that perform a mediating cast.

The CI-Allocation rule compiles the allocation form to one that records the reference type.

2. Dynamic Semantics

Figure 3 presents the definition of the runtime structures. The definition of values is adjusted

so that proxied functions and injected values now use inert coercions to represent casts on them.

Delayed casts are defined to be either values, delayed casts with casts on them, or pairs of delayed
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casts. This definition is different from the one for the monotonic machine in that casts are no

longer restricted such that the target type is more precise than the source type (The restriction

can be found in the typing rules for delayed casts in Figure 7 in Chapter 3). This restriction is

lifted because the operational semantics for reducing delayed casts for λref
c is defined in terms of a

small-step reduction relation where intermediate redexes are also written to the heap and there are

situations where cast expressions that violate this restriction will be written to the heap. Consider

the following heap:

a 7→ (〈0, 0〉〈(Int× Int)!〉)〈(?× ?)?〉

The address a is mapped to a cell that contains a delayed cast. The delayed cast is a projection

on an injected value and it will reduce to 〈0, 0〉〈Int!× Int!〉. The pair of zeros is being cast from a

pair of integers to a pair of dynamic values and ? × ? 6v Int × Int. To allow this expression to be

written to the heap, the target type of the cast is not required to be more precise than the source

type. This was not an issue for the monotonic machine because such an intermediate redex was

fully reduced to a value first by the cast function and then only the result value was written to the

heap.

Another difference is that, unlike the monotonic machine, λref
c allows delayed casts to be nested.

When casting a delayed cast, the monotonic machine throws away the old cast and writes the new

cast to the heap. This is facilitated by using the type-based representation for casts, a convenient

representation for inspecting and modifying the types involved in the cast. On the other hand,

λref
c uses coercions and it does not know, yet, how to compose adjacent coercions. However, the

grammar for delayed casts in λref does not allow nesting even though the cast reduction relation

assumes that it is allowed. This is believed to be a typo in the grammar rule in λref. Finally,

λref
c reduces casts on pairs to pairs of cast expressions that need to be written to the heap, so the

grammar for delayed casts permits pairs of delayed casts. This is not needed by the monotonic

machine, as explained before, because the machine reduces casts on pairs to values before writing

the result value to the heap.

Figure 4 presents the reduction relations for casts. The relation −→c applies coercions to

values. Applying the identity coercion ι to a value reduces to the same value and applying the

failure coercion reduces to error. Furthermore, reducing a sequence of injection and projection

coercions reduces to a new cast expression where the new coercion is created from the types held by

the injection and the projection. Note that this is different from the semantics of λref as the latter
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Pure coercion reduction rules e −→c e

v〈ι〉 −→c v
v〈I!〉〈J?〉 −→c v〈I ⇒ J〉

v〈⊥I,J〉 −→c error

〈v1, v2〉〈c× d〉 −→c 〈v1〈c〉, v2〈d〉〉
Cast reduction rules e, ν −→c e, ν

PureCast
M −→c N

M, ν −→c N, ν

CastRef1
ν(a) = dc : T1 T1 ∼ T2 T1 u T2 6= T1

a〈Ref T2〉, ν −→c a, ν(a 7→ dc〈T1 ⇒ (T1 u T2)〉 : T1 u T2)

CastRef2
ν(a)rtti ∼ T ν(a)rtti u T = ν(a)rtti

a〈Ref T 〉, ν −→c a, ν
CastRef3

ν(a)rtti 6∼ T
a〈Ref T 〉, ν −→c error, ν

Congc

M,ν −→c N, ν
′

F[M ], ν −→c F[N ], ν ′
CongErrc E [error], ν −→c error, ν

Figure 4. λref
c casts dynamic semantics.

checks for consistency of the types and reduces to an error right away if they are not consistent.

Finally, applying a pair coercion reduces to a pair of cast expressions.

When casting a reference, the heap cell pointed to by the reference is cast instead and the

heap could change. The cast reduction relation −→c relates cast expressions and heaps to new

expressions and possibly updated heaps. When applying a reference cast, the greatest lower bound

of the RTTI and the type carried by the coercion is computed using the meet function u. If the

result is undefined, this means this cast wants to change the RTTI to a type that is not necessarily

consistent with all references. A conservative approach is taken and the CastRef3 rule reduces

to error. Moreover, if the greatest lower bound type is defined but is the same as the RTTI, then

there is no need to do anything and the CastRef2 rule reduces to the same heap. Finally, if the

greatest lower bound type is different than the RTTI, this means it is more precise than the RTTI,

so the RTTI is updated to that new type and a delayed cast is written to the heap to that new

type as well.

Figure 5 presents the program and state reduction rules. The pure program reduction relation

−→p is standard. The dynamic semantics for reference operations is specified by the reduction

relation −→r. The Alloc rule allocates a reference and initialize the RTTI field to the type

annotation T . The semantics of the read and write syntactic forms on statically typed references

is efficient and corresponds to that of loads and stores. The DynRead rule performs a mediating

cast from the RTTI to the type of the reference T when reading from a partially typed one. Dually,
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Pure reduction rules e −→p e

fst 〈v1, v2〉 −→p v1
snd 〈v1, v2〉 −→p v2

(λ(x : T ).M) v −→p [x := v]M
(v1〈c→ d〉) v2 −→p (v1 (v2〈c〉))〈d〉

Reference operations reduction rules e, µ −→r e, ν

ref v@T, µ −→r a, µ(a 7→ v : T ) if a 6∈ dom(µ)(Alloc)

!a, µ −→r µ(a)val, µ(Read)

!a@T, µ −→r µ(a)val〈µ(a)rtti ⇒ T 〉, µ(DynRead)

a := v, µ −→r Unit, µ(a 7→ v : µ(a)rtti)(Write)

a := v@T, µ −→r Unit, µ(a 7→ v〈T ⇒ µ(a)rtti〉 : µ(a)rtti)(DynWrite)

State reduction rules e, ν −→ e, ν

Pure
M −→p N

M,µ −→ N,µ
Mono

M,µ −→r N, ν

M,µ −→ N, ν

Cong
M,ν −→ N, ν′

F[M ], µ −→ F[N ], ν
CongErr E [error], µ −→ error, ν

Cast
e, µ −→c e

′, ν

e, µ −→ e′, ν
Error

ν(a) = dc : T dc, ν −→c E [error], ν′

e, ν −→ error, ν′

NoRTTIChange

ν(a) = dc : T dc, ν −→c dc
′, ν′

ν′(a)rtti = T

e, ν −→ e, ν′(a 7→ dc′ : T )

RTTIChanged

ν(a) = dc : T dc, ν −→c dc
′, ν′

ν′(a)rtti 6= T

e, ν −→ e, ν′

Figure 5. λref
c dynamic semantics.

The DynWrite rule writes into a partially typed reference a delayed cast casting the written value

from the type of the reference to the RTTI.

In addition to program reduction relations, Figure 5 presents state reduction rules that reduce

delayed casts on the heap until they become values before continuing reducing the program. De-

layed casts are reduced using the cast reduction relation −→c. A delayed cast could reduce to

an expression that has an inner error using a congruence rule. Such expression is not a delayed

cast (check the grammar) and can not be written to the heap. If this is the case, the Error rule

reduces to error. Note that the state reduction relation in λref has a rule to handle reduction to

an error expression but does not have one to handle reduction to expressions that have an inner

error. This is believed to be a design error in λref.
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If the delayed cast reduces to another delayed cast dc′, dc′ will be written to the heap if the

RTTI did not change, via the NoRTTIChange rule. If the RTTI has changed, this means another

delayed cast has already been written to the heap and dc′ is dated. In this case, dc′ is discarded

via the RTTIChanged rule.

3. Type Safety

λref did not have a full type safety proof, and the paper [Siek et al., 2015c] present high points only

and referred to the mechanized type safety proof of the machine [Siek and Vitousek, 2013]. In this

section, a full type safety proof that is mechanized in Agda is presented.

3.1. Definitions and Lemmas Regarding The Static Semantics. In this section, lemmas

are presented regarding expression and heap typing. These lemmas hold even for other semantics

presented later in the dissertation.

The heap typing can move along two orthogonal dimensions, it could become either more

precise (Definition 1) or its domain can grow (Definition 2)1. Combining both relations results in

one, vp/e, that fully captures how the heap typing changes after each step, called Heap Typing

Progress (Definition 3).

Definition 1 (Precision relation on heap typings). Σ′ vp Σ iff dom(Σ′) = dom(Σ) and Σ(a) =

T implies Σ′(a) = T ′ where T ′ v T .

Definition 2 (Extension relation on heap typings). Σ ve Σ′ iff dom(Σ) ⊆ dom(Σ′) and

Σ(a) = Σ′(a).

Definition 3 (Progress relation for heap typings). Σ′ vp/e Σ if Σ′ vp Σ or Σ ve Σ′.

Lemma 2 asserts that expression typing is preserved when moving to a more precise heap typing.

Similarly, Lemma 3 asserts that expression typing is also preserved when moving to a larger heap

typing. Corollary 3.1 combines both lemmas and asserts that expression typing is preserved when

the heap typing changes with respect to the vp/e relation.

Lemma 2 (Strengthening wrt. the heap typing precision). If Σ | Γ ` e : T and Σ′ vp Σ, then

Σ′ | Γ ` e : T .

1Garbage collection is ignored and heaps can not become smaller
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Proof. For the case of addresses: From Σ′ vp Σ and the WT-addr rule and transitivity of

v, we have Σ′(a) v T . Therefore Σ′ | Γ ` a : T . �

Lemma 3 (Weakening wrt. the heap typing extension). If Σ | Γ ` e : T and Σ ve Σ′, then

Σ′ | Γ ` e : T .

Proof. For the case of addresses: we have Σ′(a) v T from Σ ve Σ and the WT-addr rule.

Therefore Σ′ | Γ ` a : T . �

Corollary 3.1 (Weakening wrt. the heap typing progress). If Σ | Γ ` e : T and Σ′ vp/e Σ,

then Σ′ | Γ ` e : T .

Proof. By applying Lemmas 2 and 3 in the cases of vp and ve respectively. �

3.2. Lemmas Regarding The Dynamic Semantics. Heaps are well-typed when the de-

layed casts inside respect heap typing.

Definition 4 (Well-typed heaps). A heap ν is well-typed with respect to heap typing Σ, written

Σ ` ν, iff ∀a, T. Σ(a) = T implies ∃ dc s.t. Σ | ∅ ` dc : T and ν(a) = dc : T .

The following corollary follows from Lemma 2.

Corollary 3.2 (Heap cast). If Σ ` ν and ν(a) = dc : T and T ′ v T , then a can be cast to

Ref T ′ such that Σ(a 7→ T ′) ` ν(a 7→ (dc〈T ⇒ T ′〉) : T ′).

Proof. Let Σ′ = Σ(a 7→ T ′) and dc′ = dc〈T ⇒ T ′〉. From T ′ v T and Σ ` ν we have T ′ v Σ(a)

which implies Σ′ vp Σ. Next, Lemma 2 is applied to all delayed casts in the heap and to dc′, so

we get Σ′ | ∅ ` dc′ : T ′, thus Σ′ ` ν(a 7→ dc′ : T ′). �

Similarly, the following corollary follows from Lemma 3.

Corollary 3.3 (Heap extension). If Σ ` µ and Σ | ∅ ` v : T and a 6∈ dom(Σ), then v can be

added at a such that Σ(a 7→ T ) ` µ(a 7→ v : T ).

Proof. Let Σ′ = Σ(a 7→ T ). We have Σ ve Σ′ from a 6∈ dom(Σ). Next, Lemma 3 is applied

to all values in the heap and to v to get Σ′ | ∅ ` v : T . We add v to the heap at address a, thus

Σ′ ` µ(a 7→ v : T ). �
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Lemma 1 shows that coercions are either inert or active. Active coercions do not create values, so

it better be the case that they can take a step. Lemma 4 asserts this fact:

Lemma 4 (Active cast progress). If Σ ` ν and Σ | ∅ ` v : T and c : T =⇒ T ′ and c ↓, then

∃ e,ν ′ s.t. v〈c〉, ν −→c e, ν
′

Proof. By case analysis on c ↓. In the case of monotonic reference coercion, v must be some

address a, and v〈Ref T ′〉 takes a step via −→c. In particular:

CastRef1: if T ′ ∼ ν(a)rtti and T ′ u ν(a)rtti 6= ν(a)rtti.

CastRef2: if T ′ ∼ ν(a)rtti and T ′ u ν(a)rtti = ν(a)rtti.

CastRef3: if T ′ � ν(a)rtti.

�

The following lemma proves that a delayed cast can take step if it is not a value.

Lemma 5 (Reducible delayed cast progress). If Σ ` ν and Σ | ∅ ` dc : T and dc is not a value,

then ∃ e,ν ′ s.t. dc, ν −→c e, ν
′

Proof. By case analysis on dc.

Case v: Contradiction by the premise that dc is not a value.

Case dc′〈c〉: By cases on whether dc′ is a value

Case yes: We know that dc is not a value, so it must be the case that c is neither an

injection or a function coercion, so Lemma 4 is applied.

Case no: The induction hypothesis is applied to dc and a step is taken via Congc.

Case 〈dc1, dc2〉: It must be the case that either or both projections are not values, so the induction

hypothesis is applied to first projection that is not a value and a step is taken via Congc.

�

However this is not true for arbitrary cast expressions because inert coercions form values.

Corollary 5.1 (Cast progress). If Σ ` ν and Σ | ∅ ` v : T and c : T =⇒ T ′, then either

(1) v〈c〉 is a value, or

(2) ∃ e, ν ′ s.t. v〈c〉, ν −→c e, ν
′

Proof. By Lemma 1, c is either c ↑ or c ↓. In the case of the former, we conclude that v〈c〉 is

a value. Otherwise, Lemma 4 is applied. �
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If a delayed cast took a reduction step, the result expression should be another delayed cast or an

erroneous expression.

Lemma 6 (Reducible delayed cast preservation). If Σ ` ν and Σ | ∅ ` dc : T and Σ′ | ∅ ` e : T

and Σ′ ` ν ′ and dc, ν −→c e, ν
′, then either

(1) e is a delayed cast, or

(2) e = E [error]

Progress holds when the heap contains at least one delayed cast that is not a value, as follows:

Lemma 7 (Progress with evolving heap). If Σ ` ν and ν is not a normal heap and Σ | ∅ `M :

T , then ∃ ν ′ s.t. M, ν −→M,ν ′

Proof. Because ν is not normal, then ∃ a, dc s.t. ν(a)val = dc and dc is not a value. By

Lemma 5, dc takes a step to an expression e. By Lemma 6, there are two cases:

Case e = E [error]: : A step is taken via Error.

Case e is a delayed cast: : By cases on whether ν(a)rtti = ν ′(a)rtti

Case ν(a)rtti = ν ′(a)rtti: A step is taken via NoRTTIChange

Case ν(a)rtti 6= ν ′(a)rtti: A step is taken via RTTIChanged

�

Progress in the case of a normal heap is standard.

Lemma 8 (Progress with normal heap). If Σ ` µ and Σ | ∅ `M : T , then either

(1) M is a value, or

(2) M = error, or

(3) ∃ N, ν s.t. M, µ −→ N, ν

Proof. By Lemma 5.1 and standard induction on the typing derivation. �

From Lemmas 7 and 8, the full proof of progress is assembled by cases on whether the heap is in a

normal state:

Corollary 8.1 (Progress). If Σ ` ν and Σ | ∅ `M : T , then either

(1) M is a value, or

(2) M = error, or
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(3) ∃ N, ν ′ s.t. M, ν −→ N, ν ′

Lemma 9 (Type preservation). If Σ ` ν and Σ | ∅ ` M : T and M,ν −→ N, ν ′, then

∃ Σ′ s.t. Σ′ | ∅ ` N : T and Σ′ ` ν ′ and Σ′ vp/e Σ

Type safety follows from Corollary 8 and Lemma 9.

Theorem 10 (Type safety). If Σ ` ν and Σ | ∅ ` e : T , then either

(1) e diverges, or

(2) e = error, or

(3) ∃ v,Σ′, ν ′ s.t. e, ν −→∗ v, ν ′ and Σ′ | ∅ ` v : T and Σ′ ` ν ′

4. Summary

λref
c is a reduction semantics for monotonic references that uses coercions, and is a variant of

λref [Siek et al., 2015c]. λref
c fixes the following minor problems in λref:

• The grammar for casted values2 does not allow casts on other casted values. However,

the rule CastRef1 in the cast reduction relation reads a casted value from the heap and

then wraps it in another cast expression that is written to the heap. λref
c fixes this issue

by changing the grammar of delayed casts to allow casts on delayed casts (Figure 3).

• A casted value could reduce to an expression that has an inner error using a congruence

rule. Such expression is not a casted value and can not be written to the heap. The state

reduction relation has a rule to handle reduction to an error expression but does not have

one to handle reduction to expressions that have an inner error. λref
c fixes this issue by

updating the Error rule to make sure the result delayed cast could be decomposed into

a context and an error expression.

• The type preservation lemma, the second item in Lemma 2, relates the old heap typing and

the new heap typing with the precision relation on heap typing (Definition 1). However,

this does not account for the fact that the heap could grow by creating new references.

λref
c fixes this issue by recognizing that the heap typing could move along two orthogonal

dimensions, it could become either more precise (Definition 1) or larger (Definition 2).

The type preservation lemma is updated accordingly (Lemma 9).

2λrefc uses the term delayed casts instead to avoid confusion with values that have casts on them
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Furthermore, a full type-safety proof mechanized in Agda was presented.
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CHAPTER 5

Practical And Space-Efficient Monotonic References

Delayed casts play an important role in the operational semantics of both the monotonic ma-

chine and λref
c , namely to ensure the correct reduction of casts on cyclic values in the heap. However,

delayed casts are essentially expressions that are written to the heap. In λref
c , those expressions are

reduced using a small-step reduction relation. It is not obvious how to implement this reduction-

in-the-heap in a compiled implementation of a gradually typed language. A practical semantics

should write values only to the heap.

Furthermore, although λref
c uses coercions to represent casts, it does not guarantee space-

efficiency. Space-efficiency is an important property to have in gradually typed programming

languages to ensure O(1) access to proxied values. Although monotonic references does not create

proxied addresses, other higher-order features in the language create proxies such as functions.

This chapter presents a new reduction semantics for monotonic references that writes values

only to the heap. In this design, a cast function is provided to cast values on the heap and it

returns values and a list of casts on addresses that are put into a queue for subsequent processing,

making the semantics straightforward to implement. Furthermore, this design is refined further to

add space-efficiency to functions.

The chapter is organized as follows: Section 1 illustrates why λref
c writes cast expressions to the

heap. Sections 2 and 3 present our approach and prove type safety. Finally, Section 4 presents the

space-efficient version and Section 6 proves bounds on space consumption.

1. The Problem of Expressions on the Heap

It was discussed in detail in Section 4.3 in Chapter 3 why the monotonic machines writes delayed

casts to the heap. This section reviews how λref
c puts expressions on the heap that are reduced-in-

the-heap using a small-step reduction relation and discusses why this process is not convenient to

implement in a runtime system. Consider the example listed in Figure 11 in Chapter 3 that creates

a cycle in the heap.
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Recall that, on line 6, function g is applied to r, but g expects a reference to a pair of different

types.

A cast will be performed and the address a will be updated to

a 7→
〈

(λ(x : ?). x)〈?→ ?⇒ ?〉〈?⇒ (?→ Int)〉,
a〈Ref (?× ?)⇒ ?〉〈?⇒ Ref ((Int→ ?)× ?)〉

〉

The cast on the first element of the pair proceeds without further ado.

a 7→
〈

(λ(x : ?). x)〈?→ ?⇒ ?→ Int〉,
a〈Ref (?× ?)⇒ ?〉〈?⇒ Ref ((Int→ ?)× ?)〉

〉

The cast on the second element of the pair is a cast to a reference type, the address a will be cast

to the greatest lower bound of the target type of the cast and the current RTTI, which amounts

to:

(Int→ Int)× (Ref ((Int→ ?)× ?))

This cast causes another cast on the first element of the pair. Proceeding with a reduction step

yields the following state.

a 7→
〈

(λ(x : ?). x)〈?→ ?⇒ ?→ Int〉〈?→ Int⇒ Int→ Int〉,
a

〉

In the above sequence of reductions, it was crucial that the cast on the first element of the pair

to ? → Int was written to the heap before the first element was cast again to the type Int → ?,

enabling a greatest lower bound of Int→ Int that took both types into account.

Unfortunately, it is not obvious how to implement this process efficiently in a compiler and

runtime system. Literally placing expressions in the heap would require a runtime representation

of abstract syntax trees and an interpreter, which would be costly to implement and rather slow to

execute.

Alternatively, one might try to cast the value in a heap cell in one big step before writing it back

to the heap, but the straightforward version of this idea is problematic because of race conditions.

In the above example, the second cast on the first element, to Int→ ?, would see the current type

as still ? → ?, so the greatest lower bound would be Int → ?. This would break the monotonicity

property (and therefore type safety), because Int → ? is not less precise than ? → Int. In the rest

of the chapter a refinement of the big-step approach is presented. The key insight is that in the

process of casting the value in a heap cell, in the case of an address, instead of immediately casting
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it, the address is left as-is and instead the address and the target type of the cast are put in a

queue. Once the entire value has been processed, the result value is written back to the heap and

then the addresses in the queue gets cast.

2. λrefp : Practical Dynamic Semantics For Monotonic References

In this section, a new dynamic semantics for monotonic references is presented, named λref
p . Instead

of storing expressions on the heap, λref
p uses a simple recursive function to cast values in the heap

down to values. To maintain the correctness of reference casts in the presence of cycles, the function

does not apply any inner reference casts. Instead it returns the address and puts the inner reference

cast in a queue. Reduction proceeds by examining the queue, so a suspended cast is picked from the

queue and gets applied. Applying a cast can return more suspended casts, so those get appended

to the queue. This process continues until the queue is empty.

The main insight behind this design is that the correct ordering of cast reduction is a top-down

breadth first traversal, as discussed in Section 1. With this semantics, the example in Section 1

can be reduced correctly without writing expressions to the heap. Recall that the value at address

a is allocated at type ?× ? and is cast to

(?→ Int)× (Ref ((Int→ ?)× ?))

Because the top-level cast is a reference cast, it will be pushed to the queue. Subsequently, the cast

will be read from the queue and applied to the pair in the heap. The cast on the first projection

will be ? ⇒ ? → Int and will fully reduce to a value. The cast on the second projection will be

suspended by reducing to the address a and the cast itself will be pushed to the queue. So this

value will be written to the heap as follows:

{a 7→ 〈(λ(x : ?). x)〈?→ ?⇒ ?→ Int〉, a〉 : (?→ Int)× Ref ((Int→ ?)× ?)}

and the queue will contain the address a with the target type (Int → ?) × ?. Subsequently, the

address and its target type will be popped from the queue. The value at the address is cast from

its RTTI to the greatest lower bound of the RTTI and the target type. This results in the following

final state:

{a 7→ 〈(λ(x : ?). x)〈?→ ?⇒ ?→ Int⇒ Int→ Int〉, a〉 : (Int→ Int)× Ref ((Int→ ?)× ?)}
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Runtime structures

Values v ∈ V ::= · · · | v〈c ↑〉 | a
Heap µ ::= ∅ | µ(a 7→ v : T )
Suspended casts Ψ ::= ∅ | Ψ; (a, T )

Frames F ::= · · · | 2〈c〉 | ref 2@T | !2@T | !2 | 2 := e@T | v := 2@T

Well-formedness of suspended casts Σ ` Ψ

∀(a, T ) ∈ Ψ =⇒ ∃T ′. s.t. (a, T ′) ∈ Σ

Σ ` Ψ

Figure 1. λref
p runtime structures.

Similar to λref
c , λref

p uses coercions to represent casts and does not address the problem of space-

efficiency yet. The syntax and typing rules of coercions are the same as the ones for λref
c (in Figure 1

in Chapter 4).

Figure 1 defined λref
p runtime structures. Values and frames in λref

p are defined in the same way

they are defined in λref
c . Furthermore, delayed casts are no longer needed because heaps can only

store values. The queue of suspended casts Ψ is defined as a sequence of casts where each cast is a

pair of an address and a type.

Figure 2 presents the apply-cast function which applies a coercion to a value. In the case of a

reference coercion, apply-cast returns the input address as is along with a cast that has that input

address and the type held by the coercion. This cast will be processed later by the state reduction

rules. Furthermore, in the case of a pair coercion, apply-cast is called on both projections of the

pair and the result queue from the call on the right projection is appended to the result queue from

the call on left projection. Moreover, in the cases for identity, function, injection, and projection

coercions, apply-cast returns an empty queue and the evaluation is standard (corresponds to the

reduction relation −→c for λref
c defined in Figure 4 in Chapter 4). Finally, all other cases, including

the failure coercion, evaluate to error.

Figure 2 also presents the program reduction relation −→e. The Alloc, Read, DynRead,

and Write rules are similar to the corresponding ones in λref
c (defined in Figure 5 in Chapter 4).

On the other hand, the DynWrite rule in λref
c creates a delayed cast and writes it to the heap.

To get rid of delayed casts, the new DynWrite rule casts the written value using the apply-cast

function and writes the result value right away to the heap. The queue that apply-cast returns is

now part of the configuration that the relation −→e reduces to. If the call to apply-cast evaluates

to error, DynWriteFail reduces to error.
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Cast result r ∈ R ::= (Ψ, v) | error
Cast application function apply-cast : V × C → R

apply-cast(v, c ↑) = (∅, v〈c ↑〉)
apply-cast(a,Ref T ) = (((a, T ); ∅), a)

apply-cast(v, ι) = (∅, v)
apply-cast((v〈I!〉), J?) = apply-cast(v, (I ⇒ J))

apply-cast(〈v1, v2〉, c× d) = (Ψ⊕Ψ′, 〈v′1, v′2〉)
if

apply-cast(v1, c) = (Ψ, v′1),
apply-cast(v2, d) = (Ψ′, v′2)

apply-cast(v, c) = error

Program reduction rules e, µ −→e e, µ,Ψ

ref v@T, µ −→e a, µ(a 7→ v : T ), ∅ if a 6∈ dom(µ)(Alloc)

!a, µ −→e µ(a)val, µ, ∅(Read)

!a@T, µ −→e µ(a)val〈µ(a)rtti ⇒ T 〉, µ, ∅(DynRead)

a := v, µ −→e Unit, µ(a 7→ v : µ(a)rtti), ∅(Write)

a := v@T, µ −→e Unit, µ(a 7→ v′ : µ(a)rtti),Ψ if apply-cast(v, (T ⇒ µ(a)rtti)) = (Ψ, v′)

(DynWrite)

a := v@T, µ −→e error, µ, ∅ if apply-cast(v, (T ⇒ µ(a)rtti)) = error

(DynWriteFail)

M −→p N

M,µ −→e N,µ, ∅
M,µ −→e N,µ

′,Ψ

F [M ], µ −→e F [N ], µ′,Ψ F [error], µ −→e error, µ, ∅

Cast/Succeed
apply-cast(v, c) = (Ψ, v′)

v〈c〉, µ −→e v
′, µ,Ψ

Cast/fail
apply-cast(v, c) = error

v〈c〉, µ −→e error, µ, ∅

State reduction rules e, µ,Ψ −→ e, µ,Ψ

ProgReduce
e, µ −→e e

′, µ,Ψ

e, µ, ∅ −→ e′, µ,Ψ
UpdateHeap

T ′ = T u µ(a)rtti T ′ 6= µ(a)rtti

apply-cast(µ(a)val, (µ(a)rtti ⇒ T ′)) = (Ψ′, v′)

e, µ, (a, T ); Ψ −→ e, µ(a 7→ v′ : T ′),Ψ⊕Ψ′

NoChange
T u µ(a)rtti = µ(a)rtti

e, µ, (a, T ); Ψ −→ e, µ,Ψ
Error1

T ′ = T u µ(a)rtti T ′ 6= µ(a)rtti

apply-cast(µ(a)val, (µ(a)rtti ⇒ T ′)) = error

e, µ, (a, T ); Ψ −→ error, µ,Ψ

Error2
T � µ(a)rtti

e, µ, (a, T ); Ψ −→ error, µ,Ψ

Figure 2. λref
p dynamic semantics.
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Moreover, the reduction relation for pure expressions −→p is the same as the one defined for λref
c

in Figure 5 in Chapter 4. Furthermore, cast reduction rules Cast/Succeed and Cast/Fail are

defined via calls to the apply-cast function. Finally, the congruence rule and the error propagation

rule are standard.

The state reduction relation −→, defined in Figure 2, pauses expression reduction if the queue is

not empty and pops a suspended cast to reduce. For the suspended cast (a, T ), the value stored at

address a gets cast from µ(a)rtti to µ(a)rttiuT using the apply-cast function. apply-cast evaluates the

cast down to a value and suspends any inner reference casts, returning another queue of suspended

casts. The result value gets written to the heap and the new queue gets appended to the old one.

This process continues until there are no more suspended casts in the queue. Now the queue is

empty, the expression at hand can resume reduction. This way, only values are written to the

heap. Note that the length of the queue is bounded by the size of the value being cast. This means

that the queue cannot grow without bound, so the space overhead caused by the queue is always

a constant factor. This new approach is easier to understand and is straightforward to implement

in a runtime system for gradually typed languages. A step is taken via rule UpdateHeap if the

suspended cast (a, T ) is productive, i.e. T u µ(a)rtti 6= µ(a)rtti, and successful. The result value of

the call to apply-cast gets written to the heap and the RTTI is updated accordingly. On the other

hand, if the cast fails, the Error1 rule reduces to error. Moreover, if the cast is not productive,

i.e. T u µ(a)rtti = µ(a)rtti, the NoChange rule drops it from the queue. Finally, if the target type

of the suspended cast is not consistent with the RTTI, the Error2 rule reduces to error.

Example Now let’s consider how the example program in Section 4.3 in Chapter 3 reduces

with the dynamic semantics of λref
p . The cast expression we want to reduce is:

r〈Ref ((?→ Int)× (Ref ((Int→ ?)× ?)))〉

and the heap is:

a 7→ 〈f〈(?→ ?)!〉, a〈(Ref (?× ?))!〉〉 : ?× ?

Reduction will proceed via the Cast/Succeed rule reducing the expression to the address a and

putting the cast in the queue. The reduced-to configuration is:

µ = a 7→ 〈f〈(?→ ?)!〉, a〈(Ref (?× ?))!〉〉 : ?× ?

Ψ = ∅; (a, ((?→ Int)× (Ref ((Int→ ?)× ?))))
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Next, reduction proceeds via the UpdateHeap rule and the cast will get dequeued and then

applied to the value in the heap. The result new value and the new RTTI will be written to the

heap, and the inner reference cast will be suspended. The new configuration is:

µ = a 7→ 〈f〈(ι→ (Int?))〉, a〉 : (?→ Int)× (Ref ((Int→ ?)× ?))

Ψ = ∅; (a, (Int→ ?)× ?)

Finally, reduction will apply UpdateHeap to perform the cast in the queue. The final configuration

will be:

µ = a 7→ 〈f〈(ι→ (Int?))〉〈((Int!)→ ι)〉, a〉 : (Int→ Int)× (Ref ((Int→ Int)× ?))

Ψ = ∅

Now the queue is empty, expression reduction will resume and the program will evaluate to 42.

It has been discussed throughout the section the relationship between λref
p and λref

c . However,

the relationship between λref
p and the monotonic machine is also interesting because both of them

use a cast application function that returns values. However, the function in the monotonic machine

writes the cast expression as a delayed cast to the heap, similar to what λref
c does. This delayed

cast gets read and reduced later using the same cast function and the process continues until a

value is written to that heap cell. It is believed that storing delayed casts on the heap made the

type safety proof less complicated. In the next section, it is shown that the typing of the heap in

λref
p depends on both the current heap typing and the side queue which complicates the type safety

proof.

3. λrefp Type Safety

3.1. Merging The Queue and Heap Typing. The queue of suspended casts plays a role

in typing as well as in reduction. More specifically, the typing of values in the heap depends on

both the heap typing and the queue of suspended casts. Both are combined using the following

function, Φ.
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Definition 5 (Merging Heap Typing and Suspended Casts Queue).

Φ(Σ, ∅) = Σ

Φ(Σ, ((a, T ); Ψ)) = Φ((Σ(a 7→ (T u Σ(a)))),Ψ) if Σ(a) ∼ T
Φ(Σ, ((a, T ); Ψ)) = Φ(Σ,Ψ) if Σ(a) � T

Lemma 11 shows that the result heap typing from Φ is more precise than the input one.

Lemma 11. If Σ ` Ψ, and Σ′ vp Σ then, Φ(Σ′,Ψ) vp Σ′

Proof. By induction on Ψ:

Case ∅: From Φ(Σ′, ∅) = Σ′ and the reflexivity of vp, we have Σ′ vp Σ′.

Case ((a, T ); Ψ): There are two cases:

Case Σ(a) � T : By IH, we have Φ(Σ′,Ψ) vp Σ′.

Case Σ(a) ∼ T : Consider the following:

(1) By the definition of u, we have (T u Σ′(a) v Σ′(a)). From that we have

Σ′(a 7→ T u Σ′(a)) vp Σ′.

(2) By IH we have: Φ(Σ′(a 7→ T u Σ′(a)),Ψ) vp Σ′(a 7→ T u Σ′(a)).

From 1 and 2, and the transitivity of vp, we have Φ(Σ′(a 7→ T u Σ′(a)),Ψ) vp Σ′.

�

Lemma 12 says that appending to the input queue can only make the result typing of Φ more

precise.

Lemma 12 (Extending the queue). If Σ ` Ψ and Σ′ vp Σ, then, ∀ Ψ′, s.t. Σ ` Ψ′, Φ(Σ′, (Ψ⊕
Ψ′)) vp Φ(Σ′,Ψ)

Proof. By induction on Ψ:

Case ∅: By Lemma 11.

Case ((a, T ); Ψ): There are two cases:

Case Σ(a) � T : By IH, we have Φ(Σ′, (Ψ⊕Ψ′)) vp Φ(Σ′,Ψ).

Case Σ′(a) ∼ T : By IH, we have Φ(Σ′(a 7→ T u Σ′(a)), (Ψ ⊕ Ψ′)) vp Φ(Σ′(a 7→ T u
Σ′(a)),Ψ).

�

Lemma 13 shows that Φ preserves the append operation ⊕.
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Lemma 13 (Φ preserves ⊕). If Σ ` Ψ and Σ ` Ψ′ and Σ′ vp Σ, then, Φ(Σ′, (Ψ ⊕ Ψ′)) =

Φ((Φ(Σ′,Ψ)),Ψ′)

Proof. By induction on Ψ:

Case ∅: We need to show that Φ(Σ′,Ψ′) = Φ(Σ′,Ψ′). By reflexivity.

Case ((a, T ); Ψ): There are two cases:

Case Σ′(a) � T : We need to show that Φ(Σ′, (Ψ⊕Ψ′)) vp Φ((Φ(Σ′,Ψ)),Ψ′). By IH.

Case Σ′(a) ∼ T : We need to show that Φ(Σ′(a 7→ T uΣ′(a)), (Ψ⊕Ψ′)) vp Φ((Φ(Σ′(a 7→
T u Σ′(a)),Ψ)),Ψ′). By IH setting Σ′ = Σ′(a 7→ T u Σ′(a)).

�

Lemma 14 formalizes how adding a cast to the queue changes the typing of the address being

cast.

Lemma 14 (Φ soundness). If Σ ` Ψ and Σ′ vp Σ and (a, T ) ∈ Φ(Σ′,Ψ), then, (a, T u T ′) ∈
Φ(Σ′, (Ψ⊕ (∅; (a, T ′))))

Proof. Apply Lemma 13 by choosing Ψ′ = ∅; (a, T ′). Now we need to show that (a, T u
T ′) ∈ Φ((Φ(Σ′,Ψ)), (∅; (a, T ′))). Evaluating the outer function application gives us (a, T u T ′) ∈
(Φ(Σ′,Ψ))(a 7→ T u T ′). �

3.2. Heaps. A heap is typed using two heap typings. The first one specifies the types of the

values currently living in the heap i.e. the RTTIs. The other typing is created by merging the

current queue of suspended casts and the aforementioned typing and is used as the heap typing

part of the values living in the heap.

Definition 6 (Well-typed heaps). A heap µ is well-typed with respect to heap typings Σ′ and

Σ′′, written Σ′ | Σ′′ ` µ, iff ∀a, T. Σ′(a) = T =⇒ ∃ v s.t. Σ′′ | ∅ ` v : T and µ(a) = v : T .

If the queue of suspended casts is empty, then it must be the case that Σ | Σ ` µ. If the queue

Ψ is not empty, then it must be the case that Σ′ | Φ(Σ′,Ψ) ` µ for some heap typing Σ′.

Lemma 15 formalizes how a heap gets cast.

Lemma 15 (Heap cast). If Σ ` Ψ and Σ′ | Φ(Σ′, ((a, T ′); Ψ)) ` µ and (Φ(Σ′, ((a, T ′); Ψ))) |
∅ ` v : T and Σ′ vp Σ and µ(a) = v : T , then the heap cell address a points to can be cast to type

55



(T u T ′) such that Σ′′ = Σ′(a 7→ (T u T ′)) and Σ′′ | Φ(Σ′′, (Ψ⊕Ψ′)) ` µ(a 7→ v′ : (T u T ′)) if such

v′ and Ψ′ exist.

Proof. By cases on the result of apply-cast(v, (T ⇒ (T u T ′))):

Case error: We conclude with a cast error.

Case (Ψ′, v′): Let Σ′′ = Σ′(a 7→ (T u T ′)). From (T u T ′) v T and Σ′ | (a, T ′); Ψ ` µ we

have (T u T ′) v Σ′(a) which implies Σ′′ vp Σ′. Also, by the definition of Φ, we have

Φ(Σ′′,Ψ) = Φ(Σ′, ((a, T ′); Ψ)), so from that and Lemma 12, we have that Φ(Σ′′, (Ψ ⊕
Ψ′)) vp Φ(Σ′′,Ψ) vp Φ(Σ′, ((a, T ′); Ψ)). Next, Lemma 2 is applied to all values in the

heap and to v′, so we get (Φ(Σ′′, (Ψ⊕Ψ′))) | ∅ ` v′ : (T uT ′), thus Σ′′ | Φ(Σ′′, (Ψ⊕Ψ′)) `
µ(a 7→ v′ : (T u T ′)).

�

3.3. Progress.

Lemma 16 (Progress with suspended casts). If Σ ` Ψ and Σ′ vp Σ and Σ′ | Φ(Σ′, ((a, T ); Ψ)) `
µ and Φ(Σ′, ((a, T ′); Ψ)) | ∅ `M : T , then ∃N,Ψ′, µ′ s.t. M, µ,Ψ −→ N,µ′, (Ψ⊕Ψ′)

Proof. By cases on how T and µ(a)rtti are related, a step is taken as follows:

T ∼ µ(a)rtti and T u µ(a)rtti 6= µ(a)rtti: By cases on the result of (apply-cast(µ(a)val, (µ(a)rtti ⇒
T ))):

error: A step is taken via Error1.

(v,Ψ′′): A step is taken via UpdateHeap.

T ∼ µ(a)rtti and T u µ(a)rtti = µ(a)rtti: A step is taken via NoChange.

T � µ(a)rtti: A step is taken via Error2.

�

If the queue of suspended casts is empty, then the progress lemma is standard.

Lemma 17 (Progress with no suspended casts). If Σ | Σ ` µ and Σ | ∅ `M : T , then either

(1) M is a value, or

(2) M = error, or

(3) ∃ Ψ, N, µ′ s.t. M, µ, ∅ −→ N,µ′,Ψ
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From Lemmas 16 and 17, we assemble the full proof of progress by cases on whether the queue of

suspended casts is empty:

Corollary 17.1 (Progress). If Σ ` Ψ and Σ′ | Φ(Σ′,Ψ) ` µ and Φ(Σ′,Ψ) | ∅ `M : T , then

either

(1) M is a value, or

(2) M = error, or

(3) ∃ N,µ′ s.t. M, µ,Ψ −→ N,µ′,Ψ′

3.4. Preservation. Lemma 18 asserts the well-typing of the apply-cast function.

Lemma 18 (apply-cast is well-typed). If Σ ` Ψ and Σ′ vp Σ and Φ(Σ′,Ψ) | Γ ` v : T and

c : T ⇒ T ′ and apply-cast(v, c) = (Ψ′, v′), then Φ(Σ′,Ψ⊕Ψ′) | Γ ` v′ : T ′

Proof. By induction on c:

Case ι: By Ψ⊕ ∅ = Ψ and v′ = v.

Case T2?: It must be the case that v = v1〈T1!〉. By IH and choosing v = v1 and c = (T1 ⇒ T2).

Case T1!: By Ψ⊕ ∅ = Ψ and v′ = v〈T1!〉.
Case c→ d: By Ψ⊕ ∅ = Ψ and v′ = v〈c→ d〉.
Case Ref T : It must be the case that v = a for some address a. By Lemma 14, we have

(a, (Φ(Σ′,Ψ))(a) u T ) ∈ Φ(Σ′, (Ψ⊕ (∅; (a, T )))). By the definition of u, we have

(Φ(Σ′,Ψ))(a) u T v T . From that, we have Φ(Σ′,Ψ⊕ (∅; (a, T ))) | Γ ` a : Ref T .

Case c× d: Consider the following:

(1) There is only one valid value of a pair type, a pair, so we have v = 〈v1, v2〉.
(2) Assume that c : T1 =⇒ T ′1 and Φ(Σ′,Ψ) | Γ ` v1 : T1. From 1 and IH, we have

apply-cast(v1, c) = (Ψ′, v′1) and Σ ` Ψ′ and Φ(Σ′,Ψ⊕Ψ′) | Γ ` v′1 : T ′1.

(3) From Lemma 12, we have Φ(Σ′,Ψ⊕Ψ′) vp Φ(Σ′,Ψ).

(4) From 1 and Lemma 2 in Chapter 4, we have Φ(Σ′,Ψ⊕Ψ′) | Γ ` v2 : T2.

(5) Similar to 2, assume that d : T2 =⇒ T ′2. From 4, we have Φ(Σ′,Ψ⊕Ψ′) | Γ ` v2 : T2.

By IH, we have apply-cast(v2, d) = (Ψ′′, v′2) and Σ ` Ψ′′ and Φ(Σ′, (Ψ ⊕ Ψ′) ⊕ Ψ′′) |
Γ ` v′2 : T ′2.

(6) From 5 and the associativity of ⊕, we have Φ(Σ′,Ψ⊕ (Ψ′ ⊕Ψ′′)) | Γ ` v′2 : T ′2.

(7) From Lemma 12, we have Φ(Σ′,Ψ⊕ (Ψ′ ⊕Ψ′′)) vp Φ(Σ′,Ψ⊕Ψ′).
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(8) From 7 and applying Lemma 2 in Chapter 4 to v′1, we have Φ(Σ′,Ψ ⊕ (Ψ′ ⊕ Ψ′′)) |
Γ ` v′1 : T1.

From 6 and 8, we have Φ(Σ′,Ψ⊕ (Ψ′ ⊕Ψ′′)) | Γ ` 〈v′1, v′2〉 : T1 × T2

�

Type preservation has two cases. Lemma 19 formalizes the first case where the queue of

suspended casts is empty and reduction proceeds by taking a step using the program reduction

relation −→e.

Lemma 19 (Preservation with no suspended casts). If Σ | Σ ` µ and Σ | ∅ ` M : T and

M,µ −→e N,µ
′,Ψ, then ∃ Σ′,Σ′′ s.t. Σ′ ` Ψ and Σ′ vp/e Σ and Φ(Σ′,Ψ) | ∅ ` N : T and

Σ′ | Φ(Σ′,Ψ) ` µ′

Proof. Standard induction on the derivation. Lemma 18 is applied in the case of writing into

a partially typed address. �

The other case of type preservation is if the queue of suspended cast is not empty. Lemma 20

formalizes this second.

Lemma 20 (Preservation with suspended casts). If Σ ` Ψ and Σ′ | Φ(Σ′, ((a, T ); Ψ)) ` µ and

Σ′ vp Σ and Φ(Σ′, ((a, T ); Ψ)) | ∅ ` M : T and M,µ,Ψ −→ N,µ′,Ψ′, then ∃ Σ′′ s.t. Σ ` Ψ′ and

Σ′′ vp Σ′ and Φ(Σ′′,Ψ′) | ∅ ` N : T and Σ′′ | Φ(Σ′′,Ψ′) ` µ′

Proof. By cases on how T and µ(a)rtti are related, a step is taken as follows:

T ∼ µ(a)rtti and T u µ(a)rtti 6= µ(a)rtti: By cases on the result of (apply-cast(µ(a)val, (µ(a)rtti ⇒
(T u µ(a)rtti)))):

error: A step is taken via Error1. Σ′′ = Σ′ and Ψ′ = ((a, T ′); Ψ) and µ′ = µ and

Σ′′ vp Σ′ by reflexivity.

(v,Ψ′′): A step is taken via UpdateHeap. Σ′′ = Σ′(a 7→ T u µ(a)rtti). We know that

Φ(Σ′, ((a, T ′); Ψ)) | ∅ `M : T and we need to show that Φ(Σ′′, (Ψ⊕Ψ′)) | ∅ `M : T .

This can be shown using Lemma 2 but we need first to show that Φ(Σ′′, (Ψ⊕Ψ′)) vp
Φ(Σ′, ((a, T ′); Ψ)).

(1) Φ(Σ′(a 7→ T u µ(a)rtti),Ψ) vp Φ(Σ′, ((a, T ′); Ψ)) holds by evaluating the outer

function application.
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(2) Φ(Σ′(a 7→ T u µ(a)rtti), (Ψ ⊕ Ψ′)) vp Φ(Σ′(a 7→ T u µ(a)rtti),Ψ) holds by

Lemma 12.

We conclude from (1) and (2) and the transitivity of vp.
T ∼ µ(a)rtti and T u µ(a)rtti = µ(a)rtti: A step is taken via NoChange. Σ′′ = Σ′ and Ψ′ = Ψ

and µ′ = µ and Σ′′ vp Σ′ by reflexivity.

T � µ(a)rtti: A step is taken via Error2. Σ′′ = Σ′ and Ψ′ = Ψ and µ′ = µ and Σ′′ vp Σ′ by

reflexivity.

�

Lemma 21 combines Lemmas 19 and 20 into one lemma for type preservation.

Lemma 21 (Type preservation). If Σ ` Ψ and Σ1 | Φ(Σ1,Ψ) ` µ and Φ(Σ1,Ψ) | ∅ ` M : T

and M,µ,Ψ −→ N,µ′,Ψ′, then ∃ Σ2,Σ3 s.t. Σ ` Ψ′ and Σ3 | ∅ ` N : T and Σ2 | Σ3 ` µ′ and

Σ2 vp/e Σ1

Proof. By induction on the queue of suspended casts Ψ and applying Lemmas 19 and 20. �

From Corollary 17.1 and Lemma 21, we prove type safety.

Theorem 22 (Type safety). If Σ | Σ ` µ and Σ | ∅ ` e : T , then either

(1) e diverges, or

(2) e = error, or

(3) ∃ v,Σ′, µ′ s.t. e, µ, ∅ −→∗ v, µ′, ∅ and Σ′ | ∅ ` v : T and Σ′ | ∅ ` µ′

4. λrefS : Practical and Space-Efficient Semantics for Monotonic References

Proxies ensure that the type of a proxied value matches a certain type. Proxies are needed when it

is hard to check immediately if the type of a value matches some type. For instance, it is in general

impossible to check whether an arbitrary untyped function will return a Boolean without applying

it first. With proxies, the function gets wrapped in a proxy that performs the desired checks at

application sites. In this case, it checks if the incoming argument can be cast to the domain type

of the underlying function, and also checks if the return value could be cast to Boolean.

An important consequence of that wrapping, however, is that values could accumulate multi-

ple proxies when flowing through the boundaries between statically typed and dynamically typed
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regions of code. Operations on such proxied values have to go through all the layers of proxies,

performing all their checks in order to access the underlying value.

This problem was first observed in two higher-order, mutually recursive functions [Herman

et al., 2007, 2010]. One of the functions expects a statically typed function as input and the other

expects a dynamically typed function, so implicit function casts are inserted to mediate between

the types. A function cast creates a run-time proxy wrapping the function being cast. Every time

one of the functions is called, a new proxy is created. These proxies consume space proportional to

the number of recursive calls.

With monotonic references there are no proxies on references, however neither the monotonic

machine nor λref integrated the solutions for space efficiency on other higher-order values such as

functions. In this section, λref
p is combined with space-efficiency for other values in a new semantics

that is referred to as λref
S .

4.1. Coercions in Normal Form for Monotonic References. A monotonic reference

coercion holds just a type. To cast an address with some reference coercion Ref T , the value at

that address gets cast to the greatest lower bound of the RTTI and T . Casting an address with a

sequence of two reference coercions amounts to taking the greatest lower bound of the RTTI and

the types those two coercions hold. This suggests that composing two reference coercions should

create a new reference coercion that holds a type that is the result of taking the greatest lower

bound of the types held by the coercions being composed. However this definition causes subtle

changes to the grammar and the typing rules of coercions.

λref
S uses coercions in normal form to guarantee space-efficiency. Coercions in normal form are

defined by a grammar consisting of three rules that enable coercion composition by a straightforward

recursive function. This restricted grammar makes sure that the longest coercion will be one that

starts with a projection, followed by a middle coercion, and ends with an injection. I adapt the

normal form of [Kuhlenschmidt et al., 2019] (see the appendix in their auxiliary archive) by replacing

the proxied reference coercion with one for monotonic references, and moving the failure coercion

from final coercions to middle coercions. Figure 3 presents our coercions in normal form and how

to create and compose them, which is described next.

The composition function # takes two coercions in normal form as input and returns a coercion

in normal form. It relies on three helper functions: #ic that composes a final coercion with a

coercion in normal form and returns a final coercion, #gi that composes a middle coercion and a
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Coercions (in normal form) c, d ∈ C ::= (I? ; i) | i | ι?
Final coercions i ::= (g ; I!) | g
Middle coercions g ::= ι | c→ d | c× d | Ref T | ⊥
Inert coercions c ↑ ::= i ↑
Inert final coercions i ↑ ::= (g ; I!) | g ↑
Inert middle coercions g ↑ ::= c→ d
Active coercions c ↓ ::= (I? ; i) | i ↓| ι?
Active final coercions i ↓ ::= g ↓
Active middle coercions g ↓ ::= ι | c× d | Ref T | ⊥

Coercion typing c : T =⇒ T

ι? : ? =⇒ ? ι : I =⇒ I

g : T =⇒ I

g ; I! : T =⇒ ?
i : I =⇒ T

I? ; i : ? =⇒ T ⊥ : T =⇒ T ′

c : T ′1 =⇒ T1 d : T2 =⇒ T ′2
c→ d : T1 → T2 =⇒ T ′1 → T ′2

c : T1 =⇒ T ′1 d : T2 =⇒ T ′2
c× d : T1 × T2 =⇒ T ′1 × T ′2

T v T2

Ref T : Ref T1 =⇒ Ref T2

Middle coercion creation (I ⇒g I) = i

(I ⇒g I) = ι

(I ⇒g J) = ⊥ if I 6^ J

(T1 → T2 ⇒g T
′
1 → T ′2) = (T ′1 ⇒ T1)→ (T2 ⇒ T ′2)

(T1 × T2 ⇒g T
′
1 × T ′2) = (T1 ⇒ T ′1)× (T2 ⇒ T ′2)

(Ref T ⇒g Ref T
′) = Ref T ′

Coercion creation (T ⇒ T ) = c

(I ⇒ ?) = ι ; I!
(?⇒ I) = I? ; ι

(?⇒ ?) = ι?
(I ⇒ J) = I ⇒g J

Middle coercion composition g #g g = g

⊥ #g g = ⊥
g #g ⊥ = ⊥
ι #g g = g
g #g ι = g

c→ d #g c′ → d′ = (c′ # c)→ (d # d′)
c× d #g c′ × d′ = (c # c′)× (d # d′)
Ref T #g Ref T ′ = ⊥ if T 6∼ T ′
Ref T #g Ref T ′ = Ref (T u T ′) if T ∼ T ′

Final and normal composition i #ic c = i

i #ic ι? = i
(g ; I!) #ic (J? ; i) = g #ic ((I ⇒g J) #ic i)

g #ic i = g #gi i

Middle and final composition g #gi i = i

g #gi (g′ ; I!) = (g #g g′) ; I!
g #gi g′ = g #g g′

Coercion composition c # c = c

ι? # c = c (I? ; i) # c = I? ; (i #ic c) i # c = i #ic c

Figure 3. Coercions in normal form.
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final coercion and returns a final coercion, and #g that composes two middle coercions and returns

a middle coercion.

Composing reference coercions

Composing two proxied reference coercions is done by composing the coercions for the read

and the coercions for the write [Herman et al., 2007, 2010]. Composing two monotonic coercions is

different because they hold types instead that are used to cast the heap.

The types held by the two coercions are merged by taking the greatest lower bound with

respect to the precision relation v (using the function u). However, the function u is partial and

is undefined when the two input types are not consistent. In that case the failure coercion ⊥
is returned instead, which is why failure coercions are moved into the grammar rule for middle

coercions.

The coercion composition function maps two well-typed coercions to a well-typed coercion.

Lemma 23 (Well-typed Composition). if c : T1 =⇒ T2 and d : T2 =⇒ T3, then c # d : T1 =⇒ T3

Proof. By induction on c and d. For the case Ref T #g Ref T ′: We know that T ′ v T3 by

Ref T ′ : T2 =⇒ T3. We also know that (T uT ′) v T ′. By this and the transitivity of v, we conclude

that (T u T ′) v T3. �

Figure 4 presents size functions for types and coercions. The proof of termination for coercion

composition relies on the fact that the sum of the sizes of the input coercions gets smaller at each

recursive call. However, the case for composing injections and projections is complicated because

a new coercion is created using the coercion creation function (⇒g) and we need to reason about

its size.

Lemma 24 (Size of created middle coercions). sizeT (T ⇒g T
′) ≤ 2 ∗ (sizeT (T ) + sizeT (T ′))

Lemma 25 (Size of created coercions). sizeT (T ⇒ T ′) ≤ 1 + 2 ∗ (sizeT (T ) + sizeT (T ′))

Note that the multiplication by 2 in the size function and in Lemmas 24 and 25 is needed to

accommodate the case where a sequence of coercions is created, e.g. injections and projections.

Proposition 1 (Termination of Composition). size(c # d) ≤ size(c) + size(d)

Proof. By standard induction on the size in each case. Lemma 24 is applied in the case of

composing an injection and a projection. �
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Type size sizeT (T )

sizeT (Int) = 1 sizeT (()) = 1 sizeT (?) = 1 ‖T1 → T2‖ = 1 + sizeT (T1) + sizeT (T2)

sizeT (T1 × T2) = 1 + sizeT (T1) + sizeT (T2) sizeT (Ref T ) = 1 + sizeT (T )

Coercion size size(c)

size(ι?) = 1

size(I? ; i) = 1 + (2 ∗ sizeT (I)) + sizei(i)

size(i) = 1 + sizei(i)

Final coercion size sizei(i)

sizei(g ; I!) = 1 + (2 ∗ sizeT (I)) + sizeg(g)

sizei(g) = 1 + sizeg(g)

Middle coercion size sizeg(g)

sizeg(ι) = 1

sizeg(c→ d) = 1 + size(c) + size(d)

sizeg(c× d) = 1 + size(c) + size(d)

sizeg(Ref T ) = 1 + sizeT (T )

sizeg(⊥) = 1

Figure 4. Sizes of types and coercions in normal form.

Type height ‖T‖
‖Int‖ = 1 ‖()‖ = 1 ‖?‖ = 1 ‖T1 → T2‖ = 1 +max(‖T1‖, ‖T2‖)

‖T1 × T2‖ = 1 +max(‖T1‖, ‖T2‖) ‖Ref T‖ = 1 + ‖T‖

Coercion height ‖c‖
‖ι?‖ = 1 ‖ι‖ = 1 ‖⊥‖ = 1 ‖Ref T‖ = 1 + ‖T‖ ‖c→ d‖ = 1 +max(‖c‖, ‖d‖)
‖c× d‖ = 1 +max(‖c‖, ‖d‖) ‖c ; I!‖ = max(‖c‖, ‖I‖) ‖I? ; c‖ = max(‖I‖, ‖c‖)‖

Figure 5. Height functions for types and coercions in normal form.

Furthermore, to establish space-efficiency, we reason about the height of created and composed

coercions. Figure 5 presents height functions for types and coercions. The definition of height I

use is different from the one of Herman et al. [2007] because of the difference in semantics between

Lazy-UD and Lazy-D. Injection and projection coercions have a height of 1 in the former and the

height of the types they carry in the latter. The composition of Lazy-D injection and projection

coercions creates a new coercion out of the types they carry, so the height of those types contributes

to the height of the newly created coercion.
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Uncoerced Values u ::= k | λ(x : T ). e | 〈v, v〉 | a
Values v ::= u | u〈c ↑〉
Heap µ ::= ∅ | µ(a 7→ v : T )
Suspended casts Ψ ::= ∅ | Ψ; (a, T )
Frames F ::= 2 e | v2 | 〈2, e〉 | 〈v,2〉 | fst 2 | snd 2 |

ref 2@T | !2@T | !2 | 2 := e@T | v := 2@T
Cast result r ∈ R ::= (Ψ, v) | error

Cast application function apply-cast : V × C → R
apply-cast((u〈c ↑〉), d) = apply-cast(u, (c # d))

apply-cast(u, c ↑) = (∅, u〈c ↑〉)
apply-cast(a,Ref T ) = (((a, T ); ∅), a)

apply-cast(u, ι) = (∅, u)
apply-cast(〈v1, v2〉, c× d) = ((Ψ⊕Ψ′), 〈v′1, v′2〉)

if
apply-cast(v1, c) = (Ψ, v′1),
apply-cast(v2, d) = (Ψ′, v′2)

apply-cast(v, c) = error

Figure 6. Runtime structures and the apply-cast function for λref
S .

Lemma 26 (Coercions height is bounded). ‖T1 ⇒ T2‖ ≤ max(‖T1‖, ‖T2‖)

Proposition 2 (Composition height is bounded). ‖c # d‖ ≤ max(‖c‖, ‖d‖)

Proof. By Lemma 26 and induction on the structure of the compose function c # d. �

A well-typed coercion in normal form consists of at most two sequences (three coercions or

less), so a space-efficient coercion bounded in height is also bounded in size.

4.2. λrefS Dynamic Semantics. Values, defined in Figure 6, are adjusted so that at most

one layer of casts is allowed. Furthermore, the apply-cast function, defined in Figure 6, main-

tains space-efficiency by composing the old coercion on the value being cast and the new coercion

using the coercion composition function #. Moreover, the reduction relation is restricted to also

use the composition function to combine adjacent coercions first before reducing expressions un-

derneath [Herman et al., 2007, 2010, Siek and Wadler, 2010, Siek et al., 2015a]. In particular,

a new rule Compose is added to compose adjacent coercions to the program reduction relation

−→e, defined in Figure 7. Furthermore, −→e is restricted such that reduction is disallowed under

a sequence of two or more casts. Typically, this restriction is implemented by introducing a notion

of cast-free evaluation context that does not have a cast application innermost and requiring the

reduction of cast expressions to occur in that cast-free context. Instead, λref
S imposes this restric-

tion using frames, a simpler structure than evaluation contexts. The frame for cast expressions
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Program reduction rules e, µ −→e e, µ,Ψ

ref v@T, µ −→ccd
e a, µ(a 7→ v : T ), ∅ if a 6∈ dom(µ)(Alloc)

!a, µ −→ccd
e µ(a)val, µ, ∅(Read)

!a@T, µ −→ccd
e µ(a)val〈µ(a)rtti ⇒ T 〉, µ, ∅(DynRead)

a := v, µ −→ccd
e Unit, µ(a 7→ v : µ(a)rtti), ∅(Write)

a := v@T, µ −→ccd
e Unit, µ(a 7→ v′ : µ(a)rtti),Ψ

if apply-cast(v, (T ⇒ µ(a)rtti)) = (Ψ, v′)(DynWrite)

a := v@T, µ −→ccd
e error, µ, ∅

if apply-cast(v, (T ⇒ µ(a)rtti)) = error(DynWriteFail)

M〈c〉〈d〉, µ −→ccd
e M〈c # d〉, µ, ∅(Compose)

Switch
M,µ −→ccd

e N,µ,Ψ

M,µ −→cca
e N,µ,Ψ

Pure
M −→p N

M,µ −→ccd
e N,µ, ∅

Cast/Succeed
apply-cast(v, c) = (Ψ, v′)

v〈c〉, µ −→ccd
e v′, µ,Ψ

Cast/fail
apply-cast(v, c) = error

v〈c〉, µ −→ccd
e error, µ, ∅

Cong
M,µ −→cca

e N,µ′,Ψ

F [M ], µ −→ccd
e F [N ], µ′,Ψ

CongErr
F [error], µ −→ccd

e error, µ, ∅

CongCast
M,µ −→ccd

e N,µ′,Ψ

M〈c〉, µ −→cca
e N〈c〉, µ′,Ψ CongCastE

error〈c〉, µ −→cca
e error, µ, ∅

State reduction rules e, µ,Ψ −→ e, µ,Ψ

ProgReduce
e, µ −→e e

′, µ,Ψ

e, µ, ∅ −→ e′, µ,Ψ
UpdateHeap

T ′ = T u µ(a)rtti T ′ 6= µ(a)rtti

apply-cast(µ(a)val, (µ(a)rtti ⇒ T ′)) = (Ψ′, v′)

e, µ, (a, T ); Ψ −→ e, µ(a 7→ v′ : T ′),Ψ⊕Ψ′

NoChange
T u µ(a)rtti = µ(a)rtti

e, µ, (a, T ); Ψ −→ e, µ,Ψ
Error1

T ′ = T u µ(a)rtti T ′ 6= µ(a)rtti

apply-cast(µ(a)val, (µ(a)rtti ⇒ T ′)) = error

e, µ, (a, T ); Ψ −→ error, µ,Ψ

Error2
T � µ(a)rtti

e, µ, (a, T ); Ψ −→ error, µ,Ψ

Figure 7. λref
S dynamic semantics.

is removed from the grammar for frames, defined in Figure 6, and congruence rules for cast ex-

pressions is added to −→e. Furthermore, the reduction relation is indexed by a flag that indicates

whether the cast congruence rule is allowed (cca) or disallowed (ccd) in the current context. The

cast congruence rules, CastCong and CastCongE, require the flag cca, and they switch the flag
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of the subexpression reduction to ccd. The rest of the rules are indexed by ccd. To allow rules

indexed by ccd to be also available in cca contexts, a subsumption rule, Switch is added, that flips

the flag from cca to ccd. This style is inspired by Siek [2019] formalization of the space-efficient

gradually typed lambda calculus in Agda.

5. λrefS Type Safety

Most proofs are omitted because they look very similar to the one for λref
p . The reader can refer to

Appendix A for the Agda proofs. Furthermore, the Φ function used to merge heap typing and the

queue of suspended cast function in λref
p is exactly the same for λref

S .

Lemma 27 formalizes how a heap gets cast.

Lemma 27 (Heap cast). If Σ ` Ψ and Σ′ | Φ(Σ′, ((a, T ′); Ψ)) ` µ and (Φ(Σ′, ((a, T ′); Ψ))) |
∅ ` v : T and Σ′ vp Σ and µ(a) = v : T , then the heap cell address a points to can be cast to type

(T u T ′) such that Σ′′ = Σ′(a 7→ (T u T ′)) and Σ′′ | Φ(Σ′′, (Ψ⊕Ψ′)) ` µ(a 7→ v′ : (T u T ′)) if such

v′ and Ψ′ exist.

5.1. Progress.

Lemma 28 (Progress with suspended casts). If Σ ` Ψ and Σ′ vp Σ and Σ′ | Φ(Σ′, ((a, T ); Ψ)) `
µ and Φ(Σ′, ((a, T ′); Ψ)) | ∅ `M : T , then ∃N,Ψ′, µ′ s.t. M, µ,Ψ −→ N,µ′, (Ψ⊕Ψ′)

As before, if the queue of suspended casts is empty, then the progress lemma is standard.

Lemma 29 (Progress with no suspended casts). If Σ | Σ ` µ and Σ | ∅ `M : T , then either

(1) M is a value, or

(2) M = error, or

(3) ∃ Ψ, N, µ′ s.t. M, µ, ∅ −→ N,µ′,Ψ

From Lemmas 28 and 29, we assemble the full proof of progress by cases on whether the queue of

suspended casts is empty:

Corollary 29.1 (Progress). If Σ ` Ψ and Σ′ | Φ(Σ′,Ψ) ` µ and Φ(Σ′,Ψ) | ∅ `M : T , then

either

(1) M is a value, or
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(2) M = error, or

(3) ∃ N,µ′ s.t. M, µ,Ψ −→ N,µ′,Ψ′

5.2. Preservation. Lemma 30 asserts the well-typing of the apply-cast function.

Lemma 30 (apply-cast is well-typed). If Σ ` Ψ and Σ′ vp Σ and Φ(Σ′,Ψ) | Γ ` v : T and

c : T ⇒ T ′ and apply-cast(v, c) = (Ψ′, v′), then Φ(Σ′,Ψ⊕Ψ′) | Γ ` v′ : T ′

Type preservation has two cases. Lemma 31 formalizes the first case where the queue of

suspended casts is empty and reduction proceeds by taking a step using the program reduction

relation −→e.

Lemma 31 (Preservation with no suspended casts). If Σ | Σ ` µ and Σ | ∅ ` M : T and

M,µ −→e N,µ
′,Ψ, then ∃ Σ′,Σ′′ s.t. Σ′ ` Ψ and Σ′ vp/e Σ and Φ(Σ′,Ψ) | ∅ ` N : T and

Σ′ | Φ(Σ′,Ψ) ` µ′

The other case of type preservation is if the queue of suspended cast is not empty. Lemma 32

formalizes this second.

Lemma 32 (Preservation with suspended casts). If Σ ` Ψ and Σ′ | Φ(Σ′, ((a, T ); Ψ)) ` µ and

Σ′ vp Σ and Φ(Σ′, ((a, T ); Ψ)) | ∅ ` M : T and M,µ,Ψ −→ N,µ′,Ψ′, then ∃ Σ′′ s.t. Σ ` Ψ′ and

Σ′′ vp Σ′ and Φ(Σ′′,Ψ′) | ∅ ` N : T and Σ′′ | Φ(Σ′′,Ψ′) ` µ′

Lemma 33 combines Lemmas 31 and 32 into one lemma for type preservation.

Lemma 33 (Type preservation). If Σ ` Ψ and Σ1 | Φ(Σ1,Ψ) ` µ and Φ(Σ1,Ψ) | ∅ ` M : T

and M,µ,Ψ −→ N,µ′,Ψ′, then ∃ Σ2,Σ3 s.t. Σ ` Ψ′ and Σ3 | ∅ ` N : T and Σ2 | Σ3 ` µ′ and

Σ2 vp/e Σ1

From Corollary 29.1 and Lemma 33, we prove type safety.

Theorem 34 (Type safety). If Σ | Σ ` µ and Σ | ∅ ` e : T , then either

(1) e diverges, or

(2) e = error, or

(3) ∃ v,Σ′, µ′ s.t. e, µ, ∅ −→∗ v, µ′, ∅ and Σ′ | ∅ ` v : T and Σ′ | ∅ ` µ′
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Expression size sizee(e)

sizee(k) = 1 sizee(λ(x : T ). e) = 1 + sizeT (T ) + sizee(e)

sizee(e1 e2) = 1 + sizee(e1) + sizee(e2) sizee(〈e1, e2〉) = 1 + sizee(e1) + sizee(e2)

sizee(fst e) = 1 + sizee(e) sizee(snd e) = 1 + sizee(e)

sizee(ref e@T ) = 1 + sizeT (T ) + sizee(e) sizee(!e) = 1 + sizee(e)

sizee(!e@T ) = 1 + sizeT (T ) + sizee(e) sizee(e1 := e2) = 1 + sizee(e1) + sizee(e2)

sizee(e1 := e2@T ) = 1 + sizeT (T ) + sizee(e1) + sizee(e2) sizee(error) = 1

sizee(a) = 1 sizee(e〈c〉) = 1 + sizee(e) + size(c) size(x) = 1

Store size sizeµ(µ)

sizeµ(µ) =
∑

a∈dom(µ)

(1 + sizeT (µ(a)rtti) + size(µ(a)val))

Queue size sizeΨ(Ψ)

sizeΨ(Ψ) =
∑

(a,T )∈Ψ

(1 + sizeT (T ))

Configuration size size(e, µ,Ψ)

size(e, µ,Ψ) = sizee(e) + sizeµ(µ) + sizeΨ(Ψ)

Figure 8. Sizes of configurations.

6. Space-Efficiency

In this section, I show that the total cost of maintaining coercions in λref
S is bounded. I define the

size of a configuration inductively as the sum of the sizes of its components (defined in Figure 8).

To show that coercions occupy bounded space, I compare the size of configurations in reduction

sequences to configurations in an “oracle” semantics where coercions do not occupy space at all. The

oracular measure sizeOR is defined similarly to size, but without a cost for maintaining coercions;

that is, sizeOR(c) = 0. Theorem 35 states that the fraction of the configuration occupied by

coercions is bounded in λref
S .

Theorem 35 (Space consumption). If Σ | ∅ ` M ↪→ N : T and N, ∅, ∅ −→ N ′, µ,Ψ, then

there exists some type T ′ in the derivation of Σ | ∅ ` M ↪→ N : T such that size(N ′, µ,Ψ) ∈
O(2‖T‖ × sizeOR(N ′, µ,Ψ)).

Proof Sketch. Similar to the proof of Theorem 5 of Herman et al. [2010], during evaluation,

the CongCast rule prevents nesting of adjacent coercions in any term in the evaluation context,

redex, or store. Thus the number of coercions in the configuration is proportional to the size of the
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configuration. The size of each coercion is bounded by its height and the height of the coercion is

bounded by the height of the largest type in the typing of M . �
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CHAPTER 6

Grift: A Compiler for Gradual Typing

In this chapter I present a compiler, named Grift, that addresses the difficult challenge of

efficient gradual typing for structural types. The input language includes a selection of difficult

features: first-class functions, mutable arrays, and recursive types. The language is an extension

of the Gradually Typed Lambda Calculus, abbreviated GTLC+.

Grift compiles the GTLC+ to C, then uses the Clang compiler to generate x86 executables.

The Clang compiler provides low level optimizations. The GTLC+ language includes base types

such as integers (fixnums), double precision floats, and Booleans but does not support implicit

conversions between base types (i.e. no numeric tower). The GTLC+ also includes structural types

such as n-ary tuples, mutable vectors, and higher-order functions. Figure 1 defines the syntax of the

GTLC+. Grift does not yet implement space-efficient tail recursion, but implementation strategies

for doing so are already known [Herman et al., 2007] and [Siek and Garcia, 2012]. This chapter

presents a high level description of the techniques used to generate code for coercions. The code

for Grift is available at the URL https://github.com/Gradual-Typing/Grift.

The first step in the Grift compiler is to translate to an intermediate language with explicit

casts. This process is standard [Siek and Taha, 2006, Siek, 2008, Herman et al., 2010] except

that a local optimization is added to avoid unnecessary casts in untyped code. The standard cast

insertion algorithm [Siek et al., 2015b] can cause unnecessary overhead in untyped regions of code.

Consider the function (lambda ([f : Dyn]) (f 42)) which applies a dynamically typed value f as

a function. The standard algorithm would compile it to:

(lambda ([f : Dyn])

((cast f Dyn (Dyn -> Dyn) L) (cast 42 Int Dyn L)))

The cast on f will allocate a function proxy if the source type of f is anything but (Dyn -> Dyn).

Although the proxy is important to obtain the desired semantics, the allocation is unnecessary in

this case because the proxy is used right away and never used again. Instead, Grift specializes these
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Variables x ::= (lisp style identifiers)
Characters c ::= (lisp style character literals)
Integers i ::= (signed 61 bit integers)
Floats f ::= (double precision floating point numbers)
Blame Label l ::= (double quoted strings)
Types T ::= x | Dyn | Unit | Bool | Int | Char | Float | (T . . .->T ) | (TupleT . . .)

| (RefT )|(VectT )|(RecxT )
Literals V ::= () | #f | #t | c | i | f
Operators O ::= + | - | * | / | < | <= | = | >= | > | fl+ | fl- | fl* | fl/ | fl< | fl<=

| fl= | fl>= | fl> | int->char | char->int | float->int | int->float
| print-int | read-int | print-float | print-char | read-char

Parameters F ::= x | (x : T )
Expressions E ::= V | (OE . . .) | (annE T l) | (ifE E E) | (timeE) | x

| (lambda (F . . .) : T E) | (E E . . .) | (let ([x : T E] . . .)E . . .)
| (letrec ([x : T E] . . .)E . . .) | (tupleE . . .) | (tuple-projE i)
| (repeat (xE E) [(xE)]E) | (beginE . . . E) | (boxE) | (unboxE)
| (box-set!E E) | (make-vectorE E)(vector-refE E)
| (vector-set!E E E) | (vector-lengthE)

Definitions D ::= (definex : T E) | (define (xF . . .) : T E . . .) | E
Program P ::= D . . .

Figure 1. The syntax of the GTLC+ as supported by Grift. This grammar shows
every major syntactic form available in GTLC+, and presents a handful of the
operators. Most type annotations can be omitted by dropping the preceding “:”.
The syntax for the omitting type annotations in the exception, formal parameters,
is shown in the grammar.

cases by generating code that does what a proxy would do without actually allocating one. Grift

applies this optimization to proxied references and tuples as well.

The next step in the compiler exposes the runtime functions that implement casts. The represen-

tation of values is described in Section 1. The implementation of coercions is described in Section 2.

After lowering casts, Grift performs closure conversion using a flat representation [Cardelli, 1983,

1984, Appel, 1992], and translates all constructors and destructors to memory allocations, reads,

writes, and numeric manipulation.

For memory allocation and reclamation, Grift uses the Boehm-Demers-Weiser conservative

garbage collector [Boehm and Weiser, 1988, Demers et al., 1990]. Grift optimizes closures, for

example, translating some closure applications into direct function calls using the techniques of Keep

et al. [2012]. Grift does not perform any other general-purpose or global optimizations, such as

type inference and specialization, constant folding, copy propagation, or inlining. On the other

hand, the compiler does specialize casts based on their source and target type and it specializes

operations on proxies.
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1. Value Representation

Values are represented according to their type. An Int value is a 61-bit integer stored in 64-bits. A

Bool value is also stored in 64-bits, using the C encoding of 1 for true and 0 for false. A function

value is a pointer to one of two different kinds of closures; the lowest bit of the pointer indicates

which kind. The first kind, for regular functions, is a flat closure that consists of 1) a function

pointer, 2) a pointer to a function for casting the closure, and 3) the values of the free variables.

The second kind of closure, which I call a proxy closure, is for functions that have been cast. It

consists of 1) a function pointer (to a “wrapper” function), 2) a pointer to the underlying closure,

and 3) a pointer to a coercion.

A value of reference type is a pointer to the data or to a proxy. The lowest bit of the pointer

indicates which. A proxy consists of a reference and a pointer to a reference coercion. A value

of type ? is a 64-bit integer, with the 3 lowest bits indicating the type of the value that has been

injected (i.e. cast into the ? type). For types whose values can fit in 61 bits (e.g. Int and Bool),

the injected value is stored inline. For types with larger values, the 61 bits are a pointer to a pair

of 64-bit items that contain the injected value and its type. In the following section, the macros

for allocating and accessing values have all uppercase names to distinguish them from C functions.

The macro definitions are listed in Appendix 1.

2. Implementation of Coercions

Coercions are represented by heap allocated values. In Grift, the coercions that are statically

known are allocated once at the start of the program. The runtime function coerce, described

below, implements coercion application. To do so, it interprets the coercion and performs the

actions it represents to the value.

Coercions are represented as 64-bit values where the lowest 3 bits indicate whether the coercion

is a projection, injection, sequence, failure, or identity. For an identity coercion, the remaining 61

bits are not used. For the other coercions, the 61 bits store a pointer to heap-allocated structures

that I describe below. Because the number of pointer tags is limited, the function, reference,

tuple, and recursive coercions are differentiated by a secondary tag stored in the first word of their

heap-allocated structure. The C type definitions for coercions are included in Appendix 1.
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• Projection coercions (T?p) cast from ? to a type T . The runtime representation is 2× 64

bits: the first word is a pointer to the type T and the second is a pointer to the blame

label p.

• Injection coercions (T !) cast from an arbitrary type to ?. The runtime representation is

64 bits, holding a pointer to the type T .

• Function coercions (c1, . . . , cn → d) cast between two function types of the same arity. A

coercion for a function with n parameters is represented in 64 × (n + 2) bits, where the

first word stores the secondary tag and arity, the second stores a coercion on the return,

and the remaining words store n coercions for the arguments.

• Reference coercions (Ref c d) cast between reference or vector types and are represented

as 3 × 64 bits, including the secondary tag, a coercion for writing, and another coercion

for reading.

• Tuple coercions cast between two n-tuple types and are represented as 64× (n+ 1) bits,

including the secondary tag, the length of the tuple, and a coercion for each element of

the tuple.

• Recursive coercions (Rec x.c) serve as targets for back edges in “infinite” coercions created

by casting between equirecursive types. They are represented in 2×64 bits for a secondary

tag and a pointer to a coercion whose subcoercions can contain a pointer to this coercion.

• Sequences coercions (c ; d) apply coercion c then coercion d and store two coercions in

2× 64 bits.

• Failure coercions (⊥p) immediately halt the program and are represented in 64 bits to

store a pointer to the blame label.

Applying a Coercion

The application of a coercion to a value is implemented by a C function named coerce, shown

in Figure 2, that takes a value and a coercion and either returns a value or signals an error. The

coerce function dispatches on the coercion’s tag. Identity coercions return the value unchanged.

Sequence coercions apply the first coercion and then the second coercion. Injection coercions build

a value of type ?. Projection coercions take a value of type ? and build a new coercion from the

runtime type to the target of the projection, which it applies to the underlying value.

Coercing a reference type (i.e. box or vector) builds a proxy that stores two coercions, one for

reading and one for writing, and the pointer to the underlying reference. In case the reference has
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1 obj coerce(obj v, crcn c) {

2 switch(TAG(c)) {

3 case ID_TAG: return v;

4 case SEQUENCE_TAG:

5 sequence seq = UNTAG_SEQ(c);

6 return coerce(coerce(v, seq->fst), seq->snd);

7 case PROJECT_TAG:

8 projection proj = UNTAG_PRJ(c);

9 crcn c2 = mk_crcn(TYPE(v), proj->type, proj->lbl);

10 return coerce(UNTAG(v), c2);

11 case INJECT_TAG:

12 injection inj = UNTAG_INJECT(c);

13 return INJECT(v, inj->type);

14 case HAS_2ND_TAG: {

15 switch (UNTAG_2ND(c)->second_tag) {

16 case REF_COERCION_TAG:

17 if (TAG(v) != REF_PROXY) {

18 return MK_REF_PROXY(v, c);

19 } else {

20 ref_proxy p = UNTAG_REF_PROXY(v);

21 crcn c2 = compose(p->coercion, c);

22 return MK_REF_PROXY(p->ref, c2); }

23 case FUN_COERCION_TAG:

24 if (TAG(v) != FUN_PROXY) {

25 return UNTAG_FUN(v).caster(v, c);

26 } else {

27 fun_proxy p = UNTAG_FUN_PROXY(v);

28 crcn c2 = compose(p->coercion, c);

29 return MK_FUN_PROXY(p->wrap, p->clos, c2); }

30 case TUPLE_COERCION_TAG:

31 int n = TUPLE_COERCION_SIZE(c);

32 obj t = MK_TUPLE(n);

33 for (int i = 0; i < n; i++) {

34 obj e = t.tup->elem[i];

35 crcn d = TUPLE_COERCION_ELEM(c, i);

36 t.tup->elem[i] = coerce(e, d); }

37 return t;

38 case REC_COERCION_TAG:

39 return coerce(v, REC_COERCION_BODY(c)); }}

40 case FAIL_TAG: raise_blame(UNTAG_FAIL(c)->lbl); }}

Figure 2. The coerce function applies a coercion to a value.
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already been coerced, the old and new coercions are composed via compose, so that there will only

ever be one proxy on a proxied reference, which ensures space efficiency.

When coercing a function, coerce checks whether the function has previously been coerced. If

it has not been previously coerced, then there is no proxy, and we invoke its function pointer for

casting, passing it the function and the coercion to be applied. This “caster” function allocates

and initializes a proxy closure. If the function has been coerced, Grift builds a new proxy closure

containing the underlying closure, but its coercion is the result of composing the proxy’s coercion

with the coercion being applied via compose (the code for this function is in Appendix 1). The call

to compose is what maintains space efficiency.

Coercing a tuple allocates a new tuple whose elements are the result of recurring on each of

the elements of the original tuple with each of the corresponding subcoercions of the original tuple

coercion. A recursive coercion is simply a target for specifying a recursive coercion. As such, it is

ignored and the body of the recursive coercion is applied instead to value. Failure coercions halt

execution and report an error.

Applying Functions

Because the coercion implementation distinguishes between regular closures and proxy closures,

one might expect closure call sites to branch on the type of closure being applied. However, this is

not the case because Grift ensures that the memory layout of a proxy closure is compatible with

the regular closure calling convention. The only change to the calling convention of functions is

that the lowest bit of the pointer to the closure, which distinguishes proxy closures from regular

closures, has to be cleared. This representation is inspired by a technique of Siek and Garcia [2012]

which itself is inspired by Findler and Felleisen [2002b].

Reading and Writing to Proxied References

To handle reads and writes on proxied references, Grift generates code that branches on whether

the reference is proxied or not (by checking the tag bits on the pointer). If the reference is proxied

the read or write coercion from the proxy is applied to the value read from or written to the

reference. To ensure space efficiency, there can be at most one proxy on each reference. If the

reference isn’t proxied, the operation is a simple machine read or write.
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3. Credits

The Grift project started in 2014 at Indiana University by Andre Kuhlenschmidt and Jeremy Siek.

I joined the project a year later and worked on a handful new features, optimizations, diagnostics

and profiling, and other compiler engineering tasks. My work in Grift includes adding proxied

vectors and tuples, type hoisting and hashconsing, adding experimental memory allocators, adding

a cast profiler, and building most of our benchmarking infrastructure. Furthermore, I implemented

monotonic references and vectors in Grift and that will be described in detail in Chapter 7 . On

the other hand, Andre Kuhlenschmidt created the core of the compiler pipeline starting from the

parser all the way down to the C backend. In particular, he added support for both type-based casts

and coercions. He also added support for different representations of function proxies that I will

show how they perform alongside monotonic references in Chapter 8. Furthermore, Andre added

support for closure optimizations and optimizations on casts based on known type information at

compile-time and moved Grift to adapt the Boehm garbage collector. Finally, he added support

for strings, floats, proxied references, and recursive types and created Static Grift which plays an

important role in our performance evaluation studies.
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CHAPTER 7

Implementation of Monotonic References in Grift

I have implemented monotonic references and monotonic vectors (based on the semantics of

λref
S ) in Grift. The runtime system in Grift can represent casts using coercions in normal form to

guarantee space-efficiency, which makes it a perfect host for implementing λref
S that is also based

on coercions in normal form.

1. Runtime Representations

Values Monotonic references and vectors have only one type of values, 64-bit addresses. In the

case of references, the address points to a sequence of 16 bytes on the heap. The RTTI is stored

in the first 8 bytes, and the pointed-to value is stored in the second 8 bytes. In the case of vectors

of n elements, the address points to a sequence of 16 + (n ∗ 8) bytes, where the RTTI is stored in

the first 8 bytes, the length n is stored in the next 8 bytes, and finally, the n elements are stored

in the subsequent n ∗ 8 bytes.

Coercions As explain in Chapter 6, Grift coercions are represented as 64-bit values where the

lowest 3 bits indicate whether the coercion is a projection, injection, sequence, failure, or identity.

For an identity coercion, the remaining 61 bits are not used. For the other coercions, the 61 bits

store a pointer to heap-allocated structures that stores relevant information. Because the number of

pointer tags is limited, function, reference, vector, tuple, and recursive coercions are differentiated

by a secondary tag stored in the first word of their heap-allocated structure. Reference and vector

coercions share the same representation which is a tagged 64-bit pointer to a 16 byte sequence on

the heap where the secondary tag is stored in the first 8 bytes and the type that will be used to

cast the heap cell is stored in the other 8 bytes.

Queue of suspended casts Figure 1 presents C implementation of the queue in Grift. It is

implemented as a global cyclic queue on top of a dynamically-resizing array. The queue is defined

as a struct that has five members. The capacity variable store the size of the underlying array

casts while size tracks the number of elements currently in the queue. Furthermore, front and
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1 typedef struct {

2 int capacity, size, front, rear;

3 suspended_cast* casts;

4 } cast_queue;

5 cast_queue* allocate_cast_queue() {

6 cast_queue *cq = GC_NEW(cast_queue);

7 cq->casts = GC_MALLOC(sizeof(suspended_cast[CAST_QUEUE_INIT_CAPACITY]));

8 cq->capacity = CAST_QUEUE_INIT_CAPACITY;

9 cq->front = 0; cq->rear = 0; cq->size = 0;

10 return cq;

11 }

12 void cast_queue_enqueue(cast_queue* cq, int64_t addr, int64_t ty){

13 if (cq->size == cq->capacity) cast_queue_resize(cq);

14 cq->casts[cq->rear] = (suspended_cast) { .address = addr, .type = ty };

15 cq->rear = (cq->rear + 1) % cq->capacity;

16 cq->size++;

17 }

18 void cast_queue_dequeue(cast_queue* cq){

19 suspended_cast rv = cq->casts[cq->front];

20 cq->casts[cq->front] = (suspended_cast) { .address = 0, .type = 0 };

21 cq->front = (cq->front + 1) % cq->capacity;

22 cq->size--;

23 }

24 void cast_queue_resize(cast_queue* cq){

25 int capacity = CAST_QUEUE_CAPACITY_MULTIPLE_FACTOR * cq->capacity;

26 suspended_cast* casts = GC_MALLOC(sizeof(suspended_cast[capacity]));

27 for(int i = 0; i < cq->capacity; ++i)

28 casts[i] = cq->casts[(cq->front + i) % cq->capacity];

29 if(cq->casts) GC_FREE(cq->casts);

30 cq->casts = casts;

31 cq->rear = cq->capacity;

32 cq->capacity = capacity;

33 cq->front = 0;

34 }

35 int64_t cast_queue_peek_address(cast_queue* cq) {

36 return suspended_cast_get_address(&(cq->casts[cq->front]));

37 }

38 int64_t cast_queue_peek_type(cast_queue* cq) {

39 return suspended_cast_get_type(&(cq->casts[cq->front]));

40 }

41 int cast_queue_is_not_empty(cast_queue* cq) { return cq->size != 0; }

Figure 1. C implementation of the queue of suspended casts as a cyclic queue on
top of a dynamically-resizing array.
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1 int64_t greatest_lower_bound(int64_t type1, int64_t type2);

2 int64_t apply_cast(int64_t value, int64_t type1, int64_t type2, bool suspend_ref_casts);

3

4 int64_t * apply_reference_cast(int64_t * address, int64_t type, bool suspend_ref_casts) {

5 if (suspend_ref_casts) {

6 cast_queue_enqueue(ref_cq, address, type);

7 } else {

8 int64_t old_rtti = address[0];

9 int64_t new_rtti = greatest_lower_bound(old_rtti, type);

10 if (old_rtti != new_rtti) {

11 int64_t old_value = address[1];

12 int64_t new_value = apply_cast(old_value, old_rtti, new_rtti, true);

13 address[0] = new_rtti;

14 address[1] = new_value;

15 apply_suspended_casts();

16 }

17 }

18 return address;

19 }

Figure 2. The C code for the apply_reference_cast function that casts an address
using a type carried by a coercion. Key called functions are forward declared.

rear are the indices representing the current front and rear of the queue in casts. Finally, casts

is an array of pairs where elements are 16-byte wide, a pointer to the heap cell that will be cast is

stored in the first 8 bytes, and the type that will be used for casting is stored in the other 8. casts

is dynamically resized every time a new cast is about to be inserted but there is no room for it, i.e.

size == capacity.

This design is chosen to enable fast enqueue and dequeue operations and to avoid the overhead

of queue allocations at every cast site. Alternatively, a runtime optimized for space rather than

runtime could choose to represent the queue as a linked list and allocates a new one at every cast

site.

Using data structures other than FIFO queues could affect when errors happen, changing the

observable behavior.

2. Compiling Referece Operations

Coercion Application Figure 2 presents the apply_reference_cast function that casts an

address with a type carried by a reference coercion. There are two cases, depending on whether the
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1 void apply_suspended_casts() {

2 while (cast_queue_is_not_empty(ref_cq)) {

3 int64_t * suspended_cast_address = cast_queue_peek_address(ref_cq);

4 int64_t old_rtti = suspended_cast_address[0];

5 int64_t suspended_cast_type = cast_queue_peek_type(ref_cq);

6 int64_t new_rtti = greatest_lower_bound(old_rtti, suspended_cast_type);

7 cast_queue_dequeue(ref_cq);

8 if (old_rtti != new_rtti) {

9 int64_t old_value = suspended_cast_address[1];

10 int64_t new_value = apply_cast(old_value, old_rtti, new_rtti, true);

11 suspended_cast_address[0] = new_rtti;

12 suspended_cast_address[1] = new_value;

13 }

14 }

15 }

Figure 3. The C code for the apply_suspended_casts function that applies all
suspended casts in the queue.

current cast was reached from another application of a reference coercion and they are distinguished

using the boolean parameter suspend_ref_casts. If the current coercion application was indeed

reached from an application of another reference coercion, the address and the type carried by the

coercion are enqueued and the address is returned. On the other hand, if the application of the

reference coercion was not reached from another one, i.e. it is the first reference coercion to be

applied at this cast site, then the coercion application proceeds normally by reading the current

value from the heap, casting it, and finally writing the new value along with the new RTTI back

to the heap. Before returning the address as a result, all suspended casts in the queue are applied

until the queue is empty using the apply_suspended_casts function (defined in Figure 3). The

corresponding functions for applying vector coercions are listed in Appendix C.

Reading and Writing There are two kinds of read and write expressions in λref
S . Compil-

ing reference operations from the source language to the appropriate expression in λref
S is type-

directed and is done during cast insertion (defined in Figure 2 in Chapter 4). Reading and

Writing into a statically typed reference is implemented by just read_value = address[1]; and

address[1] = new_value;.

On the other hand, reading from and writing into a partially typed reference needs to perform

a cast between the RTTI and the type of the reference. Figure 4 presents the functions read and

write that implement that behavior following the reduction specified by DynRead and DynWrite
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1 int64_t read(int64_t * address, int64_t type) {

2 int64_t rtti = address[0];

3 int64_t value = address[1];

4 return apply_cast(value, rtti, type, false);

5 }

6

7 void write(int64_t * address, int64_t value, int64_t type) {

8 int64_t rtti = address[0];

9 int64_t new_value = apply_cast(value, type, rtti, true);

10 address[1] = value;

11 apply_suspended_casts();

12 }

Figure 4. The C code for writing a value to a partially-typed address.

rules in λref
S . In the case of a write, the written value is cast to the RTTI type and that could cause

the addition of suspended casts to the queue. After writing the new value to the heap, suspended

casts in the queue are applied until the queue is empty.

3. Optimizations

Optimized Type Representation With monotonic references, new types could be created

at runtime, using the greatest lower bound function, and are often checked for equality (e.g. line

10 in Figure 2). Performing structure equality on types takes, in the worst case, a linear time with

respect to the number of nodes in the type. To speed up this operation, types are hashconsed [Allen,

1978] instead and structural equality is replaced with pointer equality which is a O(1) operation.

To enable hashconsing, the memory layout of a structural type is updated as follows: for ? and

base types (atomic types), no need to change anything because they are represented as constant

naturals. For structural types of n subparts, one extra field is added to the front. For instance, the

function type (Int, Int)→ Bool is now represented using the following array:

0 1 2 3 4

h 2 Bool Int Int

hash code

Figure 5 presents the hashcons_type function that takes a type and hashcons it. At line 35,

atomic types are returned as is. The hash code for other types is computed using a simple hashing
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1 intptr_t compute_type_hash_code(intptr_t ty) {

2 tag = ty & TYPE_TAG_MASK;

3 int64_t * untagged_ty_ptr = (int64_t *) (ty ^ tag);

4 switch (tag) {

5 case TYPE_REF_TAG:

6 int64_t arg_ty = untagged_ty_ptr[TYPE_REF_ARG_INDEX];

7 return 1 + get_type_hashcode(arg_ty) * 19;

8 case TYPE_VECT_TAG:

9 int64_t arg_ty = untagged_ty_ptr[TYPE_VECT_ARG_INDEX];

10 return 2 + get_type_hashcode(arg_ty) * 19;

11 case TYPE_FN_TAG:

12 int64_t return_ty = untagged_ty_ptr[TYPE_FN_RETURN_TYPE_INDEX];

13 int64_t hash_code = get_type_hashcode(arg_ty);

14 int64_t count = untagged_ty_ptr[TYPE_FN_ARGS_COUNT_INDEX];

15 for (int i = TYPE_FN_ARGS_OFFSET; i < count + TYPE_FN_ARGS_OFFSET; ++i) {

16 hash_code += get_type_hashcode(untagged_ty_ptr[i]);

17 hash_code *= 19;

18 }

19 return hash_code + 3;

20 case TYPE_TUPLE_TAG:

21 int64_t hash_code = 0;

22 int64_t count = untagged_ty_ptr[TYPE_TUPLE_COUNT_INDEX];

23 for (int i = TYPE_TUPLE_ARGS_OFFSET; i < count + TYPE_TUPLE_ARGS_OFFSET; ++i) {

24 hash_code += get_type_hashcode(untagged_ty_ptr[i]);

25 hash_code *= 19;

26 }

27 return hash_code + 4;

28 case TYPE_MU_TAG:

29 int64_t body_ty = untagged_ty_ptr[TYPE_MU_BODY_INDEX];

30 return 5 + get_type_hashcode(body_ty) * 19;

31 }

32 }

33

34 intptr_t hashcons_type(intptr_t ty) {

35 if (ty <= TYPE_MAX_ATOMIC_REP) return ty;

36 int64_t hash_code = compute_type_hash_code(ty);

37 int64_t htype = hashcons(types_hash_table, ty, hash_code);

38 if (ty == htype) {

39 int64_t tag = ty & TYPE_TAG_MASK;

40 ((int64_t *)(htype ^ tag))[TYPE_HASHCODE_INDEX] = hcode;

41 }

42 return htype;

43 }

Figure 5. C implementation of type hashconsing.
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Cast result r ∈ R ::= (Ψ, v) | error
Cast application function apply-castT : V × T × T → R

apply-castT ((u〈c→ d〉), (T1 → T2), (T ′1 → T ′2)) = (∅, u〈(c→ d) # ((T1 → T2)⇒ (T ′1 → T ′2))〉)
apply-castT (u〈g ; I!〉, ?, I ′) = apply-cast(u, g # (I ⇒ I ′))

apply-castT (u, T1 → T2, T
′
1 → T ′2) = (∅, u〈T1 → T2 ⇒ T ′1 → T ′2〉)

apply-castT (u〈g ; I!〉, ?, ?) = (∅, u〈g ; I!〉)
apply-castT (a,Ref T,Ref T ′) = (((a, T ′); ∅), a)

apply-castT (〈v1, v2〉, T1 × T2, T
′
1 × T ′2) = ((Ψ⊕Ψ′), 〈v′1, v′2〉)

if
apply-castT (v1, T1, T

′
1) = (Ψ, v′1),

apply-castT (v2, T2, T
′
2) = (Ψ′, v′2)

apply-castT (v, T, T ′) = error

Figure 6. Modified apply-cast to work on types instead of coercions.

algorithm implemented by the compute_type_hash_code function. The type is then inserted into the

hashconsing table types_hash_table using the hashcons function. types_hash_table is implemented

by a hash table on top of a dynamically-resizing array and uses the chaining strategy for collision

resolution. The implementation is in Appendix D. The get_type_hashcode function retrieves the

hash code of a type from an already hashconsed type.

Lazy Coercions When casting an address, a new coercion is created from the old and new

RTTIs, only to be applied immediately after and discarded right away. To avoid this unnecessary

allocation, types are used instead for casting (e.g. line 12 in Figure 2) and a coercion is created

only if there is a need to store the coercion or to compose it with another one.

Figure 6 presents the definition of the apply-castT function that expects type arguments instead

of a coercion. In the case of casting a proxied function to another function type, apply-castT creates

a coercion between the input types and composes it with the old coercion in the proxy. Furthermore,

in the case of casting from ? to an injectable type, apply-castT creates a new coercion between the

type held by the injection and the target type and composes it with the other coercion g in the

sequence in the injected value. The result of composition is used to coerce the injected value using

the apply-cast function. Finally, in the case of casting an unproxied function, apply-castT creates

a coercion out of the input types and wraps the function in a proxy with that coercion. All other

cases are standard.
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CHAPTER 8

Performance Evaluation

In this performance evaluation, I seek to answer a number of research questions regarding the

runtime overheads associated with gradual typing.

(1) What is the time cost of achieving space efficiency with coercions? (Section 2)

(2) What is the overhead of gradual typing? (Sec. 3) I subdivide this question into the

overheads on programs that are (a) statically typed, (b) untyped, and (c) partially typed.

(3) Do monotonic references eliminate overheads associated with gradual typing

from statically typed code? (Section 5)

(4) What is the overhead of using monotonic references in partially typed and

untyped code? (Sections 6 and 7)

Of course, to answer research question 2 definitively we would need to consider all possible

implementations of gradual typing. Instead, I only answer this question for the concrete implemen-

tation Grift.

1. Experimental Methodology for Evaluating Space-Efficiency

Benchmarks from a number of sources are used: the well-known Scheme benchmark suite (R6RS)

used to evaluate the Larceny [Hansen and Clinger, 2002] and Gambit [Feeley, 2014] compilers, the

PARSEC benchmarks [Bienia et al., 2008], the Computer Language Benchmarks Game (CLBG),

and the Gradual Typing Performance Benchmarks [GTP, 2018]. I do not use all of the benchmarks

from these suites due to the limited number of language features currently supported by the Grift

compiler. In addition to the above benchmarks, two textbook algorithms are included: matrix mul-

tiplication and quicksort. I chose quicksort in particular because it exhibits catastrophic overheads.

The benchmarks that are used:

sieve: This program finds prime numbers using the Sieve of Eratosthenes. The program includes a

library for streams implemented using higher-order functions and represents streams using

equirecursive types.
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n-body: Models the orbits of Jovian planets, using a simple symplectic-integrator.

tak: This benchmark, originally a Gabriel benchmark, is a triply recursive integer function related

to the Takeuchi function. It is a test of function calls and arithmetic.

ray: Ray tracing a scene, 20 iterations. It is a test of floating point arithmetic.

blackscholes: This benchmark calculates the prices for a portfolio of European options analytically

with the Black-Scholes partial differential equation. There is no closed-form expression for

the Black-Scholes equation and as such it must be computed numerically.

matmult: A triply-nested loop for matrix multiplication, with integer elements.

quicksort: The quicksort algorithm on already-sorted (worst-case) input, with integer arrays.

fft: Fast Fourier Transform on real-valued points. A test of floating point numbers.

Porting the Benchmarks.

The benchmarks are ported to the GTLC+, OCaml, Typed Racket, Chez Scheme, and Gambit.

For the R6RS and CLBG benchmarks, types annotations have been added and tail recursive loops

have been converted to an iterative form. For the Blackscholes benchmark, the GTLC+ types

are used which are the closest analog to the representation used in the original C benchmark. In

some cases the choice of representation in GTLC+ has a more specialized representation than in its

original source language, in these cases the original benchmark are altered to make the comparison

as close as possible. For Chez Scheme and Gambit the safe variants of fixnum and floating point

specialized math operations are used, but for Racket and Typed-Racket there is only the option of

safe and well-performing floating point operators. For fixnums the polymorphic math operations are

used. In OCaml, the int and float types are used which correspond to unboxed 63 bit integers and

boxed double precision floating point numbers respectively. In all languages, internal timing is used

so that any differences in runtime initialization do not count towards runtime measurements. No

attempt is made to account for the difference in garbage collection between the languages. Note that

Grift uses an off the shelf version of the Boehm-Demers-Weiser conservative garbage collector that

implements a generational mark-sweep algorithm [Boehm and Weiser, 1988, Demers et al., 1990].

The source code for all benchmarks is available at URL:https://github.com/Gradual-Typing/

benchmarks.

Experimental Setup.

The experiments were conducted on an unloaded machine with a 4-core Intel(R) Core(TM)

i7-4790 CPU @ 3.60GHz processor with 8192 KB of cache and 16 GB of RAM running Red Hat
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Figure 1. Grift with coercions is compared to Grift with type-based casts across
partially typed-programs to evaluate the cost of space-efficiency.

4.8.5-16. The C compiler was Clang 7.0.1, the Gambit compiler is version 4.9.3, Racket is version

7.2, and Chez Scheme is version 9.5.3. All time measurements use real time and I report the mean

of 5 repeated measurements.

Measuring the Performance Lattice.
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Figure 1. Grift with coercions is compared to Grift with type-based casts across
partially typed-programs to evaluate the cost of space-efficiency.

It was observed that evaluating the performance of implementations of gradually typed lan-

guages is challenging because one needs to consider not just one configuration of each program,

but the many configurations of a program that can be obtained by adding/removing type anno-

tations [Takikawa et al., 2016]. For languages with coarse-grained gradual typing, one considers

all the combinations of making each module typed or untyped, so there are 2m configurations of
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Benchmark Input description Partially typed Partially typed (coarse) Typed/Untyped
sieve Max number 1999 500 9, 999
n-body Cycles count 100, 000 100, 000 100, 000
tak (x, y, z) (40, 20, 12) (40, 20, 12) (40, 20, 12)
ray Scene size 100× 100 100× 100 100× 100
blackscholes Options count 4, 096 4, 096 16, 384
matmult Matrices size 400× 400 400× 400 400× 400
quicksort Array length 1, 000 1, 000 10, 000
fft Sequence length 65, 536 65, 536 16, 777, 216

Figure 2. List of inputs to each benchmark.

the m modules. The situation for languages with fine-grained gradual typing, as is the case for

GTLC+, is considerably more difficult because any type annotation, and even any node within a

type annotation, may be changed to Dyn, so there are millions of ways to add type annotations to

these benchmarks.

Greenman and Migeed [2018] show that sampling even a linear number of configurations (with

respect to program size) gives an accurate characterization of the performance of the exponential

configuration space. For our experiments on partially typed programs, I follow the same approach

and show the results for a linear number of randomly sampled configurations for each benchmark.

My sampling algorithm takes as inputs a statically-typed program, the number of samples,

and the number of bins to be uniformly sampled. It creates a list of associations between source

locations and type annotations, and shuffles the list to ensure randomness. The algorithm then

proceeds to pick new gradual configurations of each static type, but constrains the overall program’s

type precision to fall within a desired bin. These newly generated gradual types are then used to

generate a gradual configuration of the original program by inserting the gradual types at the source

locations where the static types where originally found. The algorithm iterates selecting an equal

number of samples for each bin until the desired number of samples have been generated.

There are many partially typed configurations where each one is ran multiple times, and it is

often the case that the performance of partially typed configurations is worse than the statically

typed one, so to make our evaluation feasible (i.e. to finish in days instead of weeks), the input sizes

to partially typed configurations are smaller than the ones to the statically typed configuration.

Figure 2 presents the inputs to each benchmark in each case.
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Figure 3. The cumulative performance of Grift and Typed Racket on partially
typed configurations. The x-axis represents the slowdowns with respect to Racket.
The y-axis is the total number of configurations. The plots on the left are for
coarse-grained configurations whereas the plots on the right are for fine-grained
configurations (so it is a different view on the same data as in Figure 1). These
results show that coercions eliminate the catastrophic overheads (quicksort, sieve)
of type-based casts and that Grift has less incidental overhead than Typed Racket
(sieve, ray, n-body).
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Figure 3. The cumulative performance of Grift and Typed Racket on partially
typed configurations. The x-axis represents the slowdowns with respect to Racket.
The y-axis is the total number of configurations. The plots on the left are for
coarse-grained configurations whereas the plots on the right are for fine-grained
configurations (so it is a different view on the same data as in Figure 1). These
results show that coercions eliminate the catastrophic overheads (quicksort, sieve)
of type-based casts and that Grift has less incidental overhead than Typed Racket
(sieve, ray, n-body).

2. The Runtime Cost of Space Efficiency

Figure 1 compares the performance of Grift with type-based casts to Grift with coercions, to

measure the runtime cost (or savings) of using coercions to obtain space efficiency. The comparison

between the two approaches is on partially typed configurations of the benchmarks.

In Figure 1, for each benchmark there are three plots that share the same x-axis, which varies

the amount of type annotations in the program, from 0% on the left to 100% on the right. In the

first plot, the y-axis is the absolute runtime in seconds. In the second, it is the number of runtime

casts that were executed, and in the third plot, the y-axis it is the length of the longest chain of

proxies that was accessed at runtime. The line marked Dynamic Grift indicates the performance of

Grift (using coercions) on untyped code. That is, on code in which every type annotation is ? and

every constructed value (e.g. integer constant) is explicitly cast to ?. The line marked Static Grift

is the performance of the Static Grift compiler on fully typed code. Static Grift is a variant of Grift

that is statically typed, with no support for (or overhead from) gradual typing (see Section 3).

The sieve and quicksort benchmarks elicits very long chains of proxies on some configurations,

which in turn causes catastrophic overhead for type-based casts. Indeed, the plot concerning the

longest proxy chains for sieve in Figure 1, shows that the sieve configurations with catastrophic

performance are the ones that accumulate proxy chains of length greater than 2, 000. Likewise,

Takikawa et al. [2016] report over 100× overhead on sieve for Typed Racket. In contrast, the

coercion-based approach successfully eliminates these catastrophic slowdowns in sieve and quicksort.

The scale of the figures makes it hard to judge their performance in detail as the runtimes are so
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low relative to the type-based casts. Coercions are 0.32× to 87× faster than type-based casts on

sieve.

The n-body benchmark is interesting in that it elicits only mild space efficiency problems, with

proxy chains up to length 9, and this corresponds to a mild increase in performance of coercions

relative to type-based casts. Coercions are 0.38× to 39× faster than type-based casts on n-body.

In benchmarks that do not elicit space efficiency problems, there is a general trend that coercions

are roughly equal in performance to type-based casts.

Answer to research question (1): On benchmarks that do not induce long

proxy chains, there is a mild speedup and sometimes a mild slowdown for coer-

cions compared to type-based casts. However, on benchmarks with long proxy

chains, coercions eliminate the catastrophic overheads.

3. Gradual Typing Overhead and Comparisons

The purpose of this section is to answer research question 2, i.e., what is the overhead of gradual

typing? We want to understand which overheads are inherent (an necessary part of sound gradual

typing) as opposed to incidental (unnecessary overheads that could be removed). incidental over-

heads are identified by comparing Grift to other implementations, and reasoning about what these

comparisons say about gradual tying as a whole, and our implementations of Gradual Typing.

In Section 3.0.1 Grift is compared to statically typed programming languages. To isolate the

overheads associated with gradual typing from the rest of our implementation, a variant of the Grift

compiler is added, named Static Grift, that requires the input program to be statically typed and

does not generate any code in support of gradual typing. Comparing Grift to Static Grift shows

that gradual typing introduces some overhead (though the comparison doesn’t say if the overhead

is inherent to gradual typing), and comparing Static Grift to OCaml and Typed Racket shows that

Static Grift has reasonable performance for a statically typed language.

In Section 3.0.2 overheads of gradual typing on dynamically typed code are examined. Grift

is compared against Racket, Gambit, and Chez Scheme. It shows that while Grift is in the ball

park of dynamically typed programming languages, it experiences some incidental overheads. The

overhead is conjectured to be incidental because Typed Racket avoids similar overheads, in their
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(a) Statically Typed Programs (b) Untyped Programs

Figure 4. A comparison of the speedup on typed and untyped programs of Grift.
For typed programs, speedup is measured wrt. Static Grift and Grift is compared
against OCaml and Typed Racket. Grift shows some overhead compared to Static
Grift but is on par with OCaml and significantly faster than Typed Racket. For
untyped programs, speedup is measured wrt. Racket and Grift is compared to
Gambit and Chez Scheme. Grift’s performance is roughly half that of Racket,
Gambit, and Chez Scheme’s.

dynamically typed implementation. This is as expected because Grift does not implement the many

general purpose optimizations that are in these other systems.

Section 3.0.3 inspects the overheads of gradual typing on partially typed code. Grift shows that

space-efficient coercions avoid the catastrophic overheads associated with gradual typing. This

demonstrates that these catastrophic overheads are incidental to gradual typing. On the other

hand, I conjecture that constant-factor overheads associated with composing coercions is inherent

for gradually typed programming languages with structural types. However, I also think there is

still some remaining constant-factor overhead that is incidental and could be eliminated.

3.0.1. Evaluation on Statically Typed Programs. Figure 4a shows the results of evaluating the

speedup of Grift with respect to Static Grift on statically typed benchmarks. The performance of

Grift sometimes dips to 0.49× that of Static Grift. To put the performance of Grift in context, it

is comparable to OCaml and better than fully static Typed Racket.

Answer to research question (2 a): the performance of Grift on statically

typed code is often reasonable and is on par with OCaml but can dip to 0.49×
with respect to Static Grift on array-intensive benchmarks.
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I think that most of the differences between Grift and Static Grift can be attributed to the

checks for proxies in operations on mutable arrays and I conjecture that this performance overhead

is inherent to the standard semantics for gradual typing.

3.0.2. Evaluation on Untyped Programs. Figure 4b shows the results of evaluating the speedup

of Grift with respect to Racket on untyped configurations of the benchmarks. The figure also

includes results for Gambit and Chez Scheme. The performance of Grift is generally lower than

Racket, Gambit, and Chez Scheme on these benchmarks, which is unsurprising because Grift does

not perform any general-purpose optimizations. This experiment does not tease apart which of

these performance differences are due to gradual typing per se and which of them are due to

orthogonal differences in implementation, e.g., ahead-of-time versus JIT compilation, quality of

general-purpose optimizations, etc. Thus I can draw only the following conservative conclusion.

Answer to research question (2 b) the overhead of Grift on untyped code is

currently reasonable but there are still some constant-factor improvements to be

made.

3.0.3. Evaluation on Partially Typed Programs. To answer research question (2 c), i.e., “what

is the overhead of gradual typing for partially typed code?”, consider the results in Figure 3. The

left-hand column shows the performance of Grift (with coercions and type-based) and for Typed

Racket on coarse-grained configurations, in which each module is either typed or untyped. The

right-hand column shows the performance results for Grift on fine-grained configurations.

The cumulative performance plots shown in Figure 3 indicate how many partially typed con-

figurations perform within a certain performance range. The x-axis is log-scale slowdown with

respect to Racket and the y-axis is the total number of configurations. For instance, to determine

how many configurations perform within a 2× slowdown of Racket, read the y-axis where the corre-

sponding line crosses 2 on the x-axis. Lines that climb steeply as they go to the right exhibit good

performance on most configurations whereas lines that climb slowly signal poorer performance.

The first observation, based on the right-hand side of Figure 3, that we take away is that

coercions reduce overheads in the benchmarks that cause long chains of proxies (quicksort, sieve,

and n-body). This can be seen in the way the green line for coercions is to the left, sometimes far

to the left, of the purple line for type-based casts. This demonstrates that catastrophic overheads

are incidental (just a property of type-based casts and related technologies), and not inherent to

gradual typing per se.
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The second observation, based on the left-hand side of Figure 3, is that Typed Racket, with

its contract-based runtime checks, and even with collapsible contracts[Feltey et al., 2018], incurs

significant incidental overheads. The yellow line for Typed Racket is far to the right of Grift on

sieve, ray, and n-body.

Third, it is interesting to compare the left-hand column to the right-hand column. Many

researchers have speculated regarding whether fine-grained or coarse-grained gradual typing elicit

more runtime overhead. The data suggests that there is not a simple answer to this question.

From a syntactic point of view, it is certainly true that coarse-grained yields fewer opportunities

for casts to be inserted. However, sometimes a single cast can have a huge impact on runtime,

especially if it appears in a hot code region or if it wraps a proxy around a value that is used later

in a hot code region. For example, in the sieve, ray, and n-body benchmarks, there is considerable

overheads for Typed Racket on many coarse-grained configurations. On the other hand, fine-

grained gradual typing provides many more opportunities for configurations to elicit more runtime

overhead. For example, compare the left and right-hand sides for quicksort and sieve, in which

there are catastrophic slowdowns for type-based casts in the fine-grained configurations but not in

the coarse-grained configurations.

Answer to research question (2 c): the overhead of Grift on partially typed

code is no longer catastrophic, but there is still room for improvement.

4. Experimental Methodology for Evaluating Monotonic References

In Section 5, the performance of monotonic references is evaluated on statically typed programs.

Grift with proxied and monotonic references is compared against Static Grift to measure the

runtime overhead caused by proxied references and to verify the claim that monotonic references

eliminate such overheads. The results of this experiment show that proxied references causes

mild runtime overheads on statically typed code and monotonic references do not cause any such

overheads.

In Section 6, the performance of monotonic references is compared against proxied references

on partially typed programs. The results of this experiment show that, on average, monotonic

references perform better than proxied references.

Figure 5 presents the inputs to each benchmark in each case.

Experimental Setup.
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Benchmark Input description Partially typed Statically Typed
sieve Max number 500 9, 999
n-body Cycles count 2, 000 100, 000
tak (x, y, z) (40, 20, 12) (40, 20, 11)
ray Scene size 100× 100 1000× 1000
blackscholes Options count 4, 096 16, 384
matmult Matrices size 400× 400 400× 400
quicksort Array length 1, 000 10, 000
fft Sequence length 65, 536 16, 777, 216

Figure 5. List of inputs to each benchmark.

The experiments were conducted on an unloaded machine with a 4-core Intel(R) Core(TM)

i7-4790 CPU @ 3.60GHz processor with 8192 KB of cache and 16 GB of RAM running Red Hat

7.7. The C compiler was Clang 9.0.1 and Grift is configured to use coercions by default to represent

casts efficiently. All time measurements use real time and the mean of 5 repeated measurements is

reported.

5. Efficient Statically Typed Code

Figure 6 shows the slowdown of different configurations of Grift with respect to Static Grift. Static

Grift is used as the baseline because its performance is the best performance one could hope for from

Grift on statically typed programs. Grift configurations vary in which reference semantics is used

(Monotonic vs Proxied) and whether function proxies are represented as closures [Siek and Garcia,

2012] (UniformClosure vs NoUniformClosure). As discussed earlier in the dissertation, representing

function proxies as closures enables uniform calling convention for functions and proxies, so dynamic

dispatch is no longer needed. Grift with monotonic references and closure representation of function

proxies matches the performance of Static Grift while Grift with proxied references is up to 1.56×
slower than Static Grift.

Answer to research question (3): On all benchmarks, the runtime of Grift

with monotonic references, and with closure representation of function proxies,

is roughly the same as the runtime of Static Grift, so yes monotonic references

eliminate overheads associated with gradual typing from statically typed code.
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Figure 6. A comparison of the slowdown on statically typed Grift programs wrt
Static Grift. The performance of Static Grift is matched by that of Grift with
monotonic references and closure representation of function proxies.

6. Evaluation of Monotonic References on Partially Typed Programs

To answer research question 4, i.e., “What is the overhead of using monotonic references in partially

typed code?”, consider the results in Figures 7 and 8. In Figure 7, each plot shows the average

runtime (in seconds) per a partially typed configuration on the Y-axis and the percentage of typed

code regions in it on the X-axis. In addition to plotting the runtimes of monotonic and proxied

references on partially typed configurations, two more lines are shown. The first one is the red line

and it represents the average runtime of the fully untyped configuration compiled using Grift with

proxied references. The other line is the dashed blue and represents the average runtime of Static

Grift on the statically typed configuration. Grift is configured with the UniformClosure option

(described in Section 5) in both configurations. In Figure 8, the Y-axis represents the summation

of the average runtimes of all partially typed configurations.

The first observation is that monotonic and proxied references have roughly the same perfor-

mance on partially typed configurations of ray and fft and our take away is that in some cases

there is no significant performance difference between using either of them on partially typed code.

96



Figure 7. Grift with monotonic references is compared against Grift with proxied
references across partially typed-programs to evaluate the overhead of monotonic
references. Monotonic references performs better on n-body, quicksort, and mat-
mult. They are about the same on fft and ray.

Furthermore, monotonic references is significantly faster than proxied references on partially typed

configurations of quicksort, n-body, and matmult. On the other hand, monotonic references is

slightly slower than proxied references on partially typed configurations of blackscholes. However,

it is still much faster than the fully untyped configuration. Our take away is that monotonic

references is faster than proxied references in most cases.
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Figure 8. Comparison between Grift with monotonic references and proxied ref-
erences. The Y-axis is the cumulative runtime in seconds across all partially typed
configurations. Monotonic references is slightly slower than proxied references on
blackscholes and is about the same or faster on the rest.

To understand the root causes of the slowdowns, let’s revisit the casting semantics of monotonic

and proxied vectors. Casting a monotonic vector is a O(n) operation where a new RTTI gets

computed and every element in the vector gets cast to it. Applying multiple casts to a monotonic

vector could be expensive but once the RTTI becomes a fully static type, the vector can no longer

be cast. On the other hand, casting a proxied vector is a much cheaper operation where either the

cast vector gets wrapped in a proxy if it was not already, or the old and new proxies are composed.

Answer to research question (4): In most benchmarks Grift with monotonic

references matches or has a better performance than proxied references on par-

tially typed code. Occasionally there is some overhead, but it does not cause

worse performance than that of the untyped configuration.
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Figure 9. Comparison between Grift with monotonic references and proxied refer-
ences on untyped programs. Furthermore, the comparison include Racket, Gambit
Scheme, and Chez Scheme as representatives of dynamically typed languages. The
Y-axis is the slowdown with respect to Racket. Monotonic and Proxied references
have roughly the same performance on untyped programs.

7. Evaluation of Monotonic References on Untyped Programs

To answer the second part of the research question 4, i.e., “What is the overhead of using monotonic

references in untyped code?”, consider the results in Figures 9. The figure shows the results of

evaluating the slowdown of Grift with monotonic references with respect to Racket on untyped

configurations of the benchmarks. The figure also includes results for Grift with proxied references,

Gambit, and Chez Scheme. The performance of monotonic references matches that of proxied

references but is generally lower than Racket, Gambit, and Chez Scheme on these benchmarks,

which is, again, unsurprising because Grift does not perform any general-purpose optimizations.

Thus, monotonic references does not introduce additional overheads in untyped programs.

Answer to research question (4): Monotonic references perform roughly as

well as proxied references on untyped code.
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8. Threats to Validity

One concern with these experiments is that the GTLC+ is a small language compared to other

programming languages. For example, both Typed Racket and OCaml support separate compila-

tion, tail-call optimization, unions, and polymorphism.The Grift compiler supports none of these.

This is likely one of the reasons that Static Grift has performance on par with OCaml. Extending

Grift to support these features will likely introduce overheads. The question relevant to this paper

is whether there will be any additional overheads that arise from the interactions between gradual

typing and the new features. For example, adding polymorphism with relational parametricity

would require runtime sealing, which could incur significant overhead.

Another concern with being a small language is that the language features available in GTLC+

limit benchmarks that are supported. This has led to a numerically leaning suite of benchmarks.

Of the 8 benchmarks presented in this paper, 6 feature a significant amount of arithmetic. There

is a possibility that Grift performs really well on arithmetic benchmarks, but not as well on other

types of benchmarks.

100



CHAPTER 9

Conclusions

Monotonic references is a design for gradually-typed mutable references that improves over

the traditional design as they incur zero-overhead for reference operations in statically-typed code

regions while maintaining the full expressiveness of gradual typing. However, prior work on mono-

tonic references presented reduction semantics that writes cast expressions to the heap that reduce

using a small-step reduction relation. It is not straightforward to implement such a process effi-

ciently in a compiler and runtime system for gradually-typed languages. Furthermore, earlier work

did not guarantee space-efficiency, a key property to ensure runtime efficiency in implementations

of gradually-typed languages.

In this dissertation, I present novel dynamic semantics for monotonic references that is space-

efficient and that only writes values to the heap. The former is accomplished by identifying a

normal form for coercions with monotonic references and by extending the composition function

accordingly. Moreover, in my dynamic semantics, a cast is applied to a value using a simple recur-

sive function that suspends inner casts of references by putting them in a queue. This process is

straightforward to implement in a runtime system for a gradually-typed language. Furthermore,

I describe my implementation in Grift, a compiler for a gradually-typed programming language,

along with a few related optimizations. Finally, performance evaluation shows that my implemen-

tation eliminates all overheads associated with gradually typed references from statically typed

code without adding significant overhead in partially typed or untyped code.
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APPENDIX A

Agda Mechanization

The agda proofs are hosted on github at the following url: https://github.com/deyaaeldeen/

monotonic/tree/dissertation. Figure 1 presents the mapping between the formal statements in

this dissertation and corresponding Agda definitions.

1. Agda Formalization

There are differences between the semantics presented in the dissertation and the semantics formal-

ized in Agda. In addition to the ones described earlier, there is also other fundamental differences

discussed below.

intrinsic vs extrinsic The semantics in this dissertation is presented in Curry style where

terms exist independent of types and typing rules assign types to those terms. I refer to this

approach as extrinsic. On the other hand, the semantics in the Agda files follows the Church style

where terms and typing rules are fused. I refer to this approach as intrinsic.

Variable Representation Variables in the semantics in this dissertation are named while the

Agda semantics uses de Bruijn indices to represent variables. The dissertation did not provide a

definition of the substitution operation M [x/N ] but it is trivial in the sense that it avoids accidental

capturing by restricting N to be a closed expression.
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Formal Statement Top Level Agda Module Agda Definition Name

Definition 1 MonoRef.Dynamics.Store.Precision vh
Definition 2 MonoRef.Dynamics.Store.Extension v
Definition 3 MonoRef.Dynamics.Store.TypingProgress StoreTypingProgress
Lemma 2 MonoRef.Dynamics.Store.Precision typeprecise-strenthen-expr
Lemma 3 MonoRef.Dynamics.Store.Extension prefix-weaken-expr
Definition 4 MonoRef.Dynamics.Store.Evolving.StoreDef Store
Corollary 3.2 MonoRef.Dynamics.Store.Evolving.Base ν-cast
Corollary 3.3 MonoRef.Dynamics.Store.Evolving.Base store
Lemma 4 MonoRef.Dynamics.Simple.EvStore.ActiveCastProgress −→cprogress-active
Lemma 5 MonoRef.Dynamics.Simple.EvStore.EvolvingStoreProgress −→cprogress-scv
Corollary 5.1 MonoRef.Dynamics.Simple.EvStore.CastProgress −→cprogress
Lemma 6 MonoRef.Dynamics.Simple.EvStore.Properties scv−→c=⇒cv′

Lemma 7 MonoRef.Dynamics.Progress.EvolvingStore progress-evolving-store
Lemma 8 MonoRef.Dynamics.Simple.EvStore.NormalStoreProgress progress-normal-store
Corollary 8.1 MonoRef.Dynamics.Simple.EvStore.TypeSafety progress
Lemma 9 MonoRef.Dynamics.Simple.EvStore.Reduction −→
Theorem 10 MonoRef.Dynamics.Simple.EvStore.TypeSafety type-safety
Definition 5 MonoRef.Dynamics.Reduction.StdStore.SuspendedCast merge′

Lemma 11 MonoRef.Dynamics.Reduction.StdStore.SuspendedCast merge′

Lemma 12 MonoRef.Dynamics.Reduction.StdStore.SuspendedCast merge-respects-v′h
Lemma 13 MonoRef.Dynamics.Reduction.StdStore.SuspendedCast merge′-respects-++′

Lemma 14 MonoRef.Dynamics.Reduction.StdStore.SuspendedCast merge-soundness
Definition 6 MonoRef.Dynamics.Store.Std.StoreDef Store
Lemma 15 MonoRef.Dynamics.Reduction.StdStore.StateReduction µ-cast
Lemma 16 MonoRef.Dynamics.Progress.StdStore suspended-cast-progress
Lemma 17 MonoRef.Dynamics.Simple.StdStore.NormalStoreProgress progress-normal-store
Lemma 17.1 MonoRef.Dynamics.Simple.StdStore.TypeSafety progress
Lemma 18 MonoRef.Dynamics.Simple.StdStore.ApplyCast apply-cast
Lemma 19 MonoRef.Dynamics.Simple.StdStore.Reduction −→e

Lemma 20 MonoRef.Dynamics.Reduction.StdStore.StateReduction −→
Lemma 21 MonoRef.Dynamics.Simple.StdStore.Reduction −→
Lemma 23 MonoRef.Coercions.NormalForm.Plain.Compose compose-normal-form
Lemma 24 MonoRef.Coercions.NormalForm.Plain.Compose mk-fcoercion-size
Lemma 25 MonoRef.Coercions.NormalForm.Plain.Compose mk-nfcoercion-size
Proposition 1 MonoRef.Coercions.NormalForm.Plain.Compose compose-normal-form
Lemma 26 MonoRef.Coercions.NormalForm.Plain.Height.Lemmas mk-nfcoercion-height
Proposition 2 MonoRef.Coercions.NormalForm.Plain.Height compose-normal-form-height
Lemma 27 MonoRef.Dynamics.Reduction.StdStore.StateReduction µ-cast
Lemma 28 MonoRef.Dynamics.Progress.StdStore suspended-cast-progress
Lemma 29 MonoRef.Dynamics.Efficient.StdStore.NormalStoreProgress progress-normal-store
Lemma 29.1 MonoRef.Dynamics.Efficient.StdStore.TypeSafety progress
Lemma 30 MonoRef.Dynamics.Efficient.StdStore.ApplyCast apply-cast
Lemma 31 MonoRef.Dynamics.Efficient.StdStore.Reduction −→e

Lemma 32 MonoRef.Dynamics.Reduction.StdStore.StateReduction −→
Lemma 33 MonoRef.Dynamics.Efficient.StdStore.Reduction −→

Figure 1. Mapping formal statements in the dissertation to Agda definitions.
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APPENDIX B

Grift Macros

1. Values, Macros, and Compose

Figures 1, 2, 3, and 4 lists the C structs used to represent values and macros used in the code

examples to manipulate them. Figure 5 shows the code for the compose runtime function. Figure 5

gives the interface for an associative map/stack used in compose to recognize when we have already

composed a recursive coercion that could be used for a particular pair of coercions.

1 # define TAG(value) (((int64_t)value)&0b111)

2 # define UNTAG_INT(value) (((int64_t)value)&~0b111)

3 # define TAG_INT(value, tag) (((int64_t)value)|tag)

4 # define UNTAG_REF(ref) ((obj*)UNTAG_INT(ref))

Figure 1. All allocated values have 3 bits that can be used for tagging.
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1 # define TYPE_DYN_RT_VALUE 7

2 # define TYPE_INT_RT_VALUE 15

3 # define TYPE_BOOL_RT_VALUE 23

4 # define TYPE_UNIT_RT_VALUE 31

5 # define TYPE_FLOAT_RT_VALUE 39

6 # define TYPE_CHAR_RT_VALUE 47

7 typedef struct {int64_t index; int64_t hash } type_summary;

8 typedef struct {type_summary summary; type* body} ref_type;

9 typedef struct {type_summary summary;

10 int64_t arity; type ret; type args[]} fun_type;

11 typedef struct {type_summary summary;

12 int64_t size; type elems[]} tup_type;

13 typedef struct {type_summary summary;

14 type* body} rec_type;

15 typedef union {

16 int64_t atm;

17 ref_type* ref; fun_type* fun;

18 tup_type* tup; rec_type* rec} type;

Figure 2. Runtime types are either 64 bit integers or a pointer to a heap allocated
type. Heap allocated types are hoisted and shared at runtime so that structural
equality is equivalent to pointer equality. The lowest 3 bits of each type are used
to distinguish between heap allocated types and atomic types. The summary field
of heap allocated types is used in implementation hashconsing at runtime for the
monotonic references implementation.
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1 typedef char* blame;

2 # define ID NULL

3 typedef struct {type type; blame info;} project_crcn;

4 typedef struct {type type} inject_crcn;

5 typedef struct {crcn fst; crcn snd} seq_crcn;

6 typedef struct {blame info} fail_crcn;

7 # define UNTAG_2ND(c) \

8 ((struct {snd_tag second_tag;}*)UNTAG_INT(c))

9 typedef struct {

10 snd_tag second_tag;

11 int32_t arity; crcn ret;

12 crcn args[] } fun_crcn;

13 typedef struct {

14 snd_tag second_tag;

15 crcn write; crcn read} ref_crcn;

16 typedef struct {

17 snd_tag second_tag;

18 int64_t size; crcn elems[] } tup_crcn;

19 typedef int64_t snd_tag;

20 typedef struct {

21 snd_tag second_tag;

22 crcn body[] } rec_crcn;

23 typedef union {

24 project_crcn* prj;

25 inject_crcn* inj;

26 seq_crcn* seq;

27 fail_crcn* fail;

28 fun_crcn* fun;

29 ref_crcn* ref;

30 tup_crcn* tup;

31 rec_crcn* rec} crcn;

32 // UNTAG_PRJ, UNTAG_FAIL, UNTAG_SEQ are similar to UNTAG_INJ

33 # define UNTAG_INJ(inj) ((inject_crcn)UNTAG_INT(inj))

34 // MK_SEQ, MK_PROJECTION, MK_INJECTION are similar

35 # define MK_REF_COERCION(r, w) \

36 (tmp_rc = (ref_crcn*)GC_MALLOC(RC_SIZE),\

37 tmp_rc->second_tag=REF_COERCION_TAG, \

38 tmp_rc->read=r, tmp_rc->write=w,\

39 (crcn)(TAG_INT(tmp_rc, HAS_2ND_TAG)))

Figure 3. Coercions are represented as directed graphs. The only back edges are
recursive coercion nodes (rec coercion). We maintain the normal form that isn’t
enforced by these types. Furthermore, we maintain the invariant that rec crcn are
only allocated if referenced by a subcoercion.
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1 typedef struct {

2 void* code;

3 (obj)(*caster)(obj, type, type, blame);

4 obj fvs[]; } closure;

5 typedef struct{obj elems[]} tuple;

6 # define MK_TUPLE(n) ((tuple*)GC_MALLOC(sizeof(obj) * n))

7 typedef struct{obj elem} box;

8 typedef struct{int64_t length; obj elems[]} vector;

9 # ifdef TYPE_BASED_CASTS

10 typedef struct {

11 obj* ref;

12 type source;

13 type target;

14 blame info;} ref_proxy;

15 # define MK_REF_PROXY(v, s, t, l) \

16 (tmp_rp = (ref_proxy*)GC_MALLOC(RP_SIZE),\

17 tmp_rp->value=v, tmp_rp->source=s,\

18 tmp_rp->target=t, tmp_rp->info=l,\

19 (obj)TAG_INT(tmp_rp, REF_PROXY_TAG)

20 # define UNTAG_FUN(fun) ((closure*)(fun)))

21 # elseif COERCIONS

22 # define UNTAG_FUN(fun) ((closure*)UNTAG_INT(fun))

23 typedef struct {obj* ref; crcn cast;} ref_proxy

24 # define MK_REF_PROXY(v, c) \

25 (tmp_rp = (ref_proxy*)GC_MALLOC(RP_SIZE),\

26 tmp_rp->value=v, tmp_rp->coerce=c,\

27 (obj)TAG_INT(tmp_rp, REF_PROXY_TAG)

28 # endif

29 typedef struct {obj value; type source} nonatomic_dyn;

30 # define UNTAG_NONATOMIC(value) \

31 ((nonatomic_dyn)UNTAG_INT(value))

32 typedef union {

33 int64_t atomic;

34 nonatomic_dyn* boxed} dynamic;

35 # define UNTAG(v) \

36 ((TAG(v) == INT_TAG) ? (obj)(UNTAG_INT(v)>>3) : \

37 (TAG(v) == UNIT_TAG) ? (obj)UNIT_CONSTANT : \

38 ... (obj)UNTAG_NONATOMIC(v).value)

39 # define TYPE(v) \

40 ((TAG(v) == INT_TAG) ? (type)INT_TYPE : \

41 (TAG(v) == UNIT_TAG) ? (type)UNIT_TYPE :\

42 ... UNTAG_NONATOMIC(v)->source)

Figure 4. Value Representation
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1 # define INJECT(v, s) \

2 ((s==INT_TYPE) ? TAG_INT(v<<3, INT_TAG) :\

3 (s==UNIT_TYPE) ? DYN_UNIT_CONSTANT : ... \

4 ... (tmp_na = (nonatomic_dyn*)GC_MALLOC(NA_DYN_SIZE),\

5 tmp_na->value=value, tmp_na->source=s, (obj)tmp_na)

6 typedef union {

7 int64_t fixnum; double flonum; dynamic dyn;

8 closure* clos; tuple* tuple;

9 box* box; vector* vec} obj;

Figure 4. Value Representation

1 typedef struct {

2 crcn fst;

3 crcn snd;

4 crcn mapsto } assoc_triple;

5 typedef struct {

6 unsigned int size;

7 unsigned int next;

8 assoc_triple *triples;} assoc_stack;

9

10 // Push a new triple on the assoc_stack

11 void

12 assoc_stack_push(assoc_stack *m, crcn f, crcn s, crcn t);

13

14 // return index of association of f and s

15 // returns -1 if the association isn't found

16 int grift_assoc_stack_find(assoc_stack *m, obj f, obj s);

17

18 // pop the most recent triple, return the mapsto value

19 obj

20 grift_assoc_stack_pop(assoc_stack *m);

21

22 // return the mapsto of the ith association

23 obj

24 grift_assoc_stack_ref(assoc_stack *m, int i);

25

26 // update the mapsto of the ith association

27 void

28 grift_assoc_stack_set(assoc_stack *m, int i, obj v);

Figure 5. The association stack is used compose to compose recursive equations
at runtime. It associates two pointers as a key to another pointer.

116



1 assoc_stack *as;

2 crcn compose(crcn fst, crcn snd, bool* id_eqv, int* fvs) {

3 if (fst == ID) {if (snd == ID) return ID; else { *id_eqv = false; return snd; }}

4 else if (snd == ID) { return fst; }

5 else if (TAG(fst) == SEQUENCE_TAG) {

6 sequence s1 = UNTAG_SEQ(fst);

7 if (TAG(s1->fst) == PROJECT_TAG) {

8 *id_eqv = false; return MK_SEQ(s1->fst, compose(s1->snd, snd, id_eqv, fvs)); }

9 else if (TAG(snd) == FAIL_TAG) { *id_eqv = false; return snd; }

10 else { sequence s2 = UNTAG_SEQ(snd);

11 type src = UNTAG_INJ(s1->snd)->type; type tgt = UNTAG_PRJ(s2->fst)->type;

12 blame lbl = UNTAG_PRJ(s2->fst)->lbl; crcn c = mk_crcn(src, tgt, lbl);

13 bool unused = true;

14 return compose(compose(seq->fst, c, &unused, fvs), s2->snd, id_eqv, fvs); }

15 } else if (TAG(snd) == SEQUENCE_TAG) {

16 if (TAG(fst) == FAIL) { *id_eqv = false; return fst; }

17 else {

18 crcn c = compose(fst, s2->fst, id_eqv, fvs);

19 *id_eqv = false; return MK_SEQ(c, UNTAG_SEQ(seq)->snd); }

20 } else if (TAG(snd) == FAIL) {

21 *id_eqv = false; return (TAG(fst) == FAIL ? fst : snd); }

22 } else if (TAG(fst) == HAS_2ND_TAG) {

23 snd_tag tag1 = UNTAG_2ND(fst)->second_tag; snd_tag tag2 = UNTAG_2ND(fst)->second_tag;

24 if (tag1 = REC_COERCION_TAG tag2 = REC_COERCION_TAG) {

25 int i = assoc_stack_find(as, c1, c2);

26 if (i < 0) {

27 assoc_stack_push(as, c1, c2, NULL); new_id_eqv = true;

28 crcn c = (tag1 == REC_COERCION_TAG) ?

29 compose(REC_COERCION_BODY(c1), c2, &new_id_eqv, fvs):

30 compose(c1, REC_COERCION_BODY(c2), &new_id_eqv, fvs);

31 crcn mu = assoc_stack_pop(as);

32 if (!*new_id_eqv) *id_eqv = false;

33 if (mu == NULL) return c;

34 *fvs -= 1;

35 if (*fvs = 0 && new_id_eqv) { return ID }

36 else { REC_COERCION_BODY_INIT(mu, c); return mu; }

37 else { crcn mu = assoc_stack_ref(as, i);

38 if (mu = NULL) {*fvs += 1; mu = MK_REC_CRCN();

39 assoc_stack_set(as, i, mu); return mu; }

40 else { return mu; }}}

41 else if (tag1 == FUN_COERCION_TAG) {

42 return compose_fun(fst, snd); }
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1 else if (tag1 == REF_COERCION_TAG) {

2 ref_crcn r1 = UNTAG_REF(fst);

3 ref_crcn r2 = UNTAG_REF(snd);

4 if (read == ID && write == ID) return ID;

5 else {

6 crcn c1 = compose(r1->read, r2->read);

7 crcn c2 = compose(r2->write, r1->write);

8 return MK_REF_COERCION(c1, c2); }}

9 else { // Must be tuple coercions

10 return compose_tuple(fst, snd); }}

11 else { raise_blame(UNTAG_FAIL(fst)->lbl); }

12 }

Figure 5. The compose function for normalizing coercions.
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APPENDIX C

Implementation of Monotonic Vectors in Grift

1 int64_t apply_cast(int64_t value, int64_t type1, int64_t type2, bool suspend_ref_casts,

2 suspend_vect_casts);

3

4 int64_t * apply_vector_cast(int64_t * address, int64_t type, bool

5 suspend_ref_casts, bool suspend_vect_casts) {

6 if (suspend_vect_casts) {

7 cast_queue_enqueue(vect_cq, address, type);

8 } else {

9 int64_t old_rtti = address[0];

10 int64_t new_rtti = greatest_lower_bound(old_rtti, type);

11 if (old_rtti != new_rtti) {

12 int64_t vect = address[1];

13 int64_t n = vector_length(vect);

14 for (int i = 0; i < n; ++i) {

15 int64_t old_value_i = address[i+2];

16 int64_t new_value_i = apply_cast(old_value_i, old_rtti,

17 new_rtti, suspend_ref_casts, true);

18 address[i+2] = new_value_i;

19 }

20 address[0] = new_rtti;

21 apply_suspended_vector_casts();

22 }

23 }

24 return address;

25 }

Figure 1. The C code for the apply_vector_cast function that casts an address
using a type carried by a coercion. Key called functions are forward declared.
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1 void apply_suspended_vector_casts(bool suspend_ref_casts) {

2 while (cast_queue_is_not_empty(vect_cq)) {

3 int64_t * suspended_cast_address = cast_queue_peek_address(vect_cq);

4 int64_t old_rtti = suspended_cast_address[0];

5 int64_t suspended_cast_type = cast_queue_peek_type(vect_cq);

6 int64_t new_rtti = greatest_lower_bound(old_rtti, suspended_cast_type);

7 cast_queue_dequeue(vect_cq);

8 if (old_rtti != new_rtti) {

9 int64_t vect = suspended_cast_address[1];

10 int64_t n = vector_length(vect);

11 for (int i = 0; i < n; ++i) {

12 int64_t old_value_i = suspended_cast_address[i+2];

13 int64_t new_value_i = apply_cast(old_value_i, old_rtti,

14 new_rtti, suspend_ref_casts, true);

15 suspended_cast_address[i+2] = new_value_i;

16 }

17 suspended_cast_address[0] = new_rtti;

18 }

19 }

20 }

Figure 2. The C code for the apply_suspended_vector_casts function that applies
all suspended casts in the queue.

1 int64_t read(int64_t * address, int64_t index, int64_t type) {

2 int64_t rtti = address[0];

3 int64_t value = address[2+index];

4 return apply_cast(value, rtti, type, false);

5 }

6

7 void vector_write(int64_t * address, int64_t index, int64_t value, int64_t type) {

8 int64_t rtti = address[0];

9 int64_t new_value = apply_cast(value, type, rtti, false, true);

10 address[2+index] = new_value;

11 apply_suspended_vector_casts(false);

12 }

Figure 3. The C code for writing a value to a partially-typed vector.
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APPENDIX D

Type Hashconsing

1 struct list {

2 int64_t data;

3 struct list* next;

4 };

5 typedef struct list* list;

6

7 struct chain {

8 list list;

9 };

10

11 typedef struct chain* chain;

12

13 struct table {

14 int64_t slots;

15 int64_t num_elems;

16 float load_factor;

17 chain* array;

18 };

19

20 typedef struct table* table;

21

22 table alloc_hash_table(int64_t slots, float load_factor)

23 {

24 table ht = GC_MALLOC(8 * 4);

25 ht->slots = slots;

26 ht->num_elems = 0;

27 ht->load_factor = load_factor;

28 ht->array = GC_MALLOC(8 * slots);

29 return ht;

30 }
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1 void ht_resize(table ht) {

2 int64_t old_slots = ht->slots;

3 chain* old_array = ht->array;

4 int64_t new_slots = old_slots * 2;

5 ht->slots = new_slots;

6 ht->array = GC_MALLOC(8 * new_slots);

7 int i;

8 for (i = 0; i < old_slots; ++i) {

9 chain C = old_array[i];

10 if (C != NULL) {

11 list p = C->list;

12 while (p != NULL) {

13 types_reinsert(ht, p->data);

14 p = p->next;

15 }

16 }

17 }

18 if (old_array) GC_FREE(old_array);

19 }
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1 int64_t hashcons(table ht, int64_t e, int64_t hcode)

2 {

3 float current_load = (float) ht->num_elems/(float) ht->slots;

4 if (current_load > ht->load_factor) {

5 ht_resize(ht);

6 }

7 int h = hcode % ht->slots;

8 h = h < 0 ? h + ht->slots : h;

9 chain C = ht->array[h];

10 if (C == NULL) {

11 C = GC_MALLOC(8 * 1);

12 ht->array[h] = C;

13 list new_item = GC_MALLOC(8 * 2);

14 new_item->data = e;

15 new_item->next = NULL;

16 C->list = new_item;

17 ht->num_elems++;

18 return e;

19 }

20 list p = C->list;

21 while (p != NULL) {

22 if (types_equal(e, p->data))

23 return p->data;

24 p = p->next;

25 }

26 list new_item = GC_MALLOC(8 * 2);

27 new_item->data = e;

28 new_item->next = C->list;

29 C->list = new_item;

30 ht->num_elems++;

31 return e;

32 }
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1 int types_equal(int64_t t1, int64_t t2)

2 {

3 int64_t tag1 = (t1 & TYPE_TAG_MASK);

4 int64_t tag2 = (t2 & TYPE_TAG_MASK);

5 int64_t count, untagged_t1, untagged_t2, i;

6 if (tag1 == tag2) {

7 untagged_t1 = (t1 ^ tag1);

8 untagged_t2 = (t2 ^ tag1);

9 switch (tag1) {

10 case TYPE_MU_TAG:

11 return ((int64_t*)untagged_t1)[TYPE_MU_BODY_INDEX] ==

12 ((int64_t*)untagged_t2)[TYPE_MU_BODY_INDEX];

13 case TYPE_GREF_TAG ... TYPE_MVECT_TAG:

14 // the type index is the same for gref,gvect,mref, and mvect.

15 return ((int64_t*)untagged_t1)[TYPE_GREF_TYPE_INDEX] ==

16 ((int64_t*)untagged_t2)[TYPE_GREF_TYPE_INDEX];

17 break;

18 case TYPE_TUPLE_TAG:

19 count = ((int64_t*)untagged_t1)[TYPE_TUPLE_COUNT_INDEX];

20 // the loop checks count along with the elements

21 for (i = TYPE_TUPLE_ELEMENTS_OFFSET-1;

22 i < (count + TYPE_TUPLE_ELEMENTS_OFFSET);

23 ++i) {

24 if (((int64_t*)untagged_t1)[i] != ((int64_t*)untagged_t2)[i]) {

25 return false;

26 }

27 }

28 return true;

29 break;
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1 case TYPE_FN_TAG:

2 count = ((int64_t*)untagged_t1)[TYPE_FN_ARITY_INDEX];

3 // the loop checks the arity and the return type along with the elements

4 for (i = TYPE_FN_FMLS_OFFSET-2; i < (count + TYPE_FN_FMLS_OFFSET); ++i) {

5 if (((int64_t*)untagged_t1)[i] != ((int64_t*)untagged_t2)[i]) {

6 return false;

7 }

8 }

9 return true;

10 break;

11 default:

12 printf("grift internal runtime error:\n"

13 " location: hashcons.c/types-equal\n"

14 " cause: unrecognized type tag: %" PRId64 "\n",

15 tag1);

16 exit(1);

17 }

18 }

19 return false;

20 }
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1 void types_reinsert(table ht, int64_t ty)

2 {

3 int64_t tag = (ty & TYPE_TAG_MASK);

4 int64_t untagged_ty = (ty ^ tag);

5 int64_t h;

6 switch (tag) {

7 case TYPE_FN_TAG ... TYPE_MU_TAG:

8 h = ((int64_t*)untagged_ty)[TYPE_HASHCONS_HASHCODE_INDEX] % ht->slots;

9 h = h < 0 ? h + ht->slots : h;

10 chain C = ht->array[h];

11 if (C == NULL) {

12 C = GC_MALLOC(8 * 1);

13 ht->array[h] = C;

14 C->list = NULL;

15 }

16 list new_item = GC_MALLOC(8 * 2);

17 new_item->data = ty;

18 new_item->next = C->list;

19 C->list = new_item;

20 break;

21 default:

22 printf("grift internal runtime error:\n"

23 " location: hashcons.c/types-reinsert\n"

24 " cause: unrecognized type tag: %" PRId64 "\n",

25 tag);

26 exit(1);

27 }

Figure 0. The C implementation of type hashconsing.
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