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A bit of history

“During optimization, assume an
infinite set of registers; treat
register allocation as a separate
problem” – John Backus

MIT loaned Sheldon Best to
IBM to write the first
register allocator.

1957: The first commercial
compiler (FORTRAN →
IBM 704).
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Introduction

Definition

Register allocation is the problem of mapping program variables to
either machine registers or memory addresses.

Best solution

minimizes the number of loads/stores from/to memory and/or cache
i.e. minimizes the total traffic between the CPU and the memory
system.
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Introduction

X86-64 Register File

• General purpose 64-bit: rax, rbx, rcx, rdx, rbp, rsp, rsi, rdi, r8,
r9, r10, r11, r12, r13, r14, r15

• MMX extension (64-bit): mmx0, mmx1, mmx2, mmx3,
mmx4, mmx5, mmx6, mmx7

• SSE extension (128-bit): xmm0, xmm1, xmm2, xmm3, xmm4,
xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11,
xmm12, xmm13, xmm14, xmm15

• AVX1 extension (256-bit): ymm0, ymm1, ymm2, ymm3,
ymm4, ymm5, ymm6, ymm7, ymm8, ymm9, ymm10, ymm11,
ymm12, ymm13, ymm14, ymm15

• Undocumented registers not exposed to the user.
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Introduction

Why we simply do not increase the number of registers to some
*large enough* number?

• In 32-bit instruction set such as x86, 32 registers require a 5
bit register identifier, so 3-address instructions waste 15 of the
32 instruction bits just to list the registers. Having 1024
registers implies that you can only have 4 instructions!

• Larger memory has slower access time, and any register file is
nothing but a small multi-ported memory.

• Slower functions calls because you will have to save a larger
number of registers.
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Introduction

Register Allocation

Decides which variables reside in registers.

Register Sufficiency

Finds the min number of registers needed to map the variables to.

Register Assignment

Maps variables to particular registers.
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Register Allocation and Memory Models

Register-to-register

Maps the set of variables to registers and have to produce correct
code.

Memory-to-memory

Determines when it is safe and profitable to promote values into reg-
isters. The transformation is optional and the code works correctly
without it.

Whatever model you pick, your ultimate goal is minimize the number
of memory operations executed by the compiled code.
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Irregular Architectures

Pre-coloring

Some variables must be assigned to particular registers. For instance,
the quotient result of the idiv is stored into EAX, while the remainder
is placed in EDX.

Aliasing

Assignment to one register name can affect the value of another. For
instance, in X86-64, EAX refers to the low 32 bits of RAX register.
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Register Allocation Variants

Global

Assigns registers to variables within a procedure. We have already
covered it in the fourth week.

SSA

Works on programs in SSA form. Given programs in SSA form,
register sufficiency problem can be solved in polynomial time.

Local

Assigns registers to variables within a basic block.
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SSA Register Allocators

However, efficiently and optimally coloring the interference graph
of a program in SSA form is not sufficient to obtain a quality
register allocation since most interference graphs are not colorable.
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Local Register Allocation

• Sensitive to value changes in registers across procedure calls.

• Fast
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Local Register Allocation

The main components:

• Boundary Allocation

• Local Allocation

• Register Assignment
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Local Register Allocation

Boundary Allocation

Set of variables that reside in registers at the beginning and at the
end of each basic block.

Local Allocation

Determines the set of variables that reside in registers at each step
of a basic block, while previously chosen boundary conditions are
respected.

Register Assignment

Maps allocated variables to actual registers.
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Local Register Allocation

Formal definition

ra : V ×N→ {True,False} where N is a natural number represents
a certain point in the program, ra(tj , i) = True if tj occupies a
register at the point i , and ra(tj , i) = False otherwise.

Under the register-to-register model, ra is constrained as follows:

• If a variable j is used by an instruction, then j occupies a
register immediately before that instruction is executed.

• If a variable j is defined by an instruction, then j occupies a
register immediately after that operation is executed.

How we ensure these restrictions in our compiler?
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LRA Example: Linear Scan Register Allocator
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Real World

GCC

• GCC Wiki:

• Graph-coloring-based register allocator failed and ditched in
2005 (-fnew-ra)
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Real World

LLVM

• Fast (debug default) Local, attempting to keep values in
registers and reusing registers as appropriate.

• Basic This is an incremental approach to register allocation.
Live ranges are assigned to registers one at a time in an order
that is driven by heuristics.

• Greedy (release default) This is a highly tuned
implementation of the Basic allocator that incorporates global
live range splitting.

• PBQP A Partitioned Boolean Quadratic Programming
(PBQP) based register allocator. This allocator works by
constructing a PBQP problem representing the register
allocation problem under consideration, solving this using a
PBQP solver, and mapping the solution back to a register
assignment.
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LLVM Basic Register Allocator

• Uses a priority queue to visit live ranges in order of decreasing
spill cost.

• Spill costs are computed as use densities.

• The active list is replaced with a set of live interval unions.
Implemented as a B+ tree per physical register.

• When a live range cannot be assigned to any register , it is
spilled.

• The spilled variables creates new tiny live ranges that are put
back on the priority queue with an infinite spill cost.

• If it is blocked by already assigned live range with smaller spill
cost, the allocator picks a physical register and spills the
interfering live ranges assigned to that register instead.
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LLVM Basic Register Allocator

Is it good?

Small live ranges tend to have high spill costs, usually infinite! This
means that all the tiny live ranges are allocated first. They use up
the first registers in the register pool, and the large live ranges get
to fight over the leftovers.
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LLVM Greedy Register Allocator

• Allocates the large live ranges first.

• Wait! But spilling small live ranges with high spilling cost is
not good either!

• Already assigned live ranges with lower spill cost can be
evicted from the live range union. Evicted live ranges are
unassigned from their physical register and put back in the
priority queue, They get a second chance at being assigned
somewhere else, or they can move on to live range splitting.

• If that is not the case, it is split into smaller pieces that are
put back on the priority queue.

• A live range is only spilled when the splitter decides that
splitting it won’t help.
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Thank you!

Deyaaeldeen Almahallawi P423/P523 21/ 21


